Black-phosphorus-based junctions and their optoelectronic device applications

[1]  Xiaonan Deng,et al.  Lateral layered semiconductor multijunctions for novel electronic devices. , 2022, Chemical Society reviews.

[2]  Han Zhang,et al.  Heterojunction Nanomedicine , 2022, Advanced science.

[3]  K. Crozier,et al.  Bright Mid-Wave Infrared Resonant-Cavity Light-Emitting Diodes Based on Black Phosphorus. , 2022, Nano letters.

[4]  M. Farbod,et al.  High performance photoresponsivity and high frequency of phosphorene/metal heterojunction as Schottky photodiode rectifier , 2021 .

[5]  Peng Zhang,et al.  Strategies and Applications for Improving the Stability of Black Phosphorus in Physical Environment , 2021, Advanced Engineering Materials.

[6]  B. Zhu,et al.  Local-Field-Dependent Nonlinear Optical Absorption of Black Phosphorus Nanoflakes Hybridized by Silver Nanoparticles , 2021, The Journal of Physical Chemistry C.

[7]  Jiang Li,et al.  Silicon/2D-material photodetectors: from near-infrared to mid-infrared , 2021, Light, science & applications.

[8]  Jiang Li,et al.  Silicon/2D-material photodetectors: from near-infrared to mid-infrared , 2021, Light: Science & Applications.

[9]  T. Low,et al.  Resonant tunnelling diodes based on twisted black phosphorus homostructures , 2021, Nature Electronics.

[10]  Baoshun Zhang,et al.  High performance mid-wave infrared photodetector based on graphene/black phosphorus heterojunction , 2021 .

[11]  Chunlei Wang,et al.  Liquid‐Based Exfoliation of Black Phosphorus into Phosphorene and Its Application for Energy Storage Devices , 2021, Small Structures.

[12]  Mo Li,et al.  Surface Modification of Black Phosphorus with Group 13 Lewis Acids for Ambient Protection and Electronic Tuning. , 2021, Angewandte Chemie.

[13]  A. Castellanos-Gómez,et al.  Gate‐Switchable Photovoltaic Effect in BP/MoTe2 van der Waals Heterojunctions for Self‐Driven Logic Optoelectronics , 2020, Advanced Optical Materials.

[14]  Xiaodong Yan,et al.  Emerging low-dimensional materials for mid-infrared detection , 2020, Nano Research.

[15]  K. Kono,et al.  Tuning Interface Barrier in 2D BP/ReSe2 Heterojunctions in Control of Optoelectronic Performances and Energy Conversion Efficiencies , 2020 .

[16]  A. Majumdar,et al.  Black phosphorus mid-infrared light emitting diodes integrated with silicon photonic waveguides. , 2020, Nano letters.

[17]  X. Zu,et al.  Rational design of type-II nano-heterojunctions for nanoscale optoelectronics , 2020 .

[18]  A. Cheetham,et al.  Unzipping of black phosphorus to form zigzag-phosphorene nanobelts , 2020, Nature Communications.

[19]  K. Ang,et al.  Black phosphorus photonics toward on-chip applications , 2020, Applied Physics Reviews.

[20]  Yuan Liu,et al.  InGaZnO Tunnel and Junction Transistors Based on Vertically Stacked Black Phosphorus/InGaZnO Heterojunctions , 2020, Advanced Electronic Materials.

[21]  Qingsheng Zeng,et al.  Black phosphorus-based van der Waals heterostructures for mid-infrared light-emission applications , 2020, Light, science & applications.

[22]  A. Pan,et al.  Record high photoresponse observed in CdS-black phosphorous van der Waals heterojunction photodiode , 2020, Science China Materials.

[23]  Mengqiu Long,et al.  First-Principles Study of Strain Modulation in S3P2/Black Phosphorene vdW Heterostructured Nanosheets for Flexible Electronics , 2020 .

[24]  W. Lu,et al.  High performance near infrared photodetector based on in-plane black phosphorus p-n homojunction , 2020, Nano Energy.

[25]  Han Zhang,et al.  Epitaxial nucleation and lateral growth of high-crystalline black phosphorus films on silicon , 2020, Nature Communications.

[26]  W. Jarernboon,et al.  Novel BCN-phosphorene bilayer: Dependence of carbon doping on band offsets for potential photovoltaic applications , 2020 .

[27]  David-Wei Zhang,et al.  Multifunctional black phosphorus/MoS2 van der Waals heterojunction , 2020 .

[28]  Lei Song,et al.  Combination of black phosphorus nanosheets and MCNTs via phosphoruscarbon bonds for reducing the flammability of air stable epoxy resin nanocomposites. , 2020, Journal of hazardous materials.

[29]  Yanqing Wu,et al.  A transverse tunnelling field-effect transistor made from a van der Waals heterostructure , 2020 .

[30]  Yuanfang Liu,et al.  Light-triggered two-dimensional lateral homogeneous p-n diodes for opto-electrical interconnection circuits. , 2020, Science bulletin.

[31]  F. Xia,et al.  Widely tunable mid-infrared light emission in thin-film black phosphorus , 2020, Science Advances.

[32]  Yupu Zhang,et al.  3D Chemical Cross‐Linking Structure of Black Phosphorus@CNTs Hybrid as a Promising Anode Material for Lithium Ion Batteries , 2020, Advanced Functional Materials.

[33]  Junhua Hu,et al.  Single-atom transition metals supported on black phosphorene for electrochemical nitrogen reduction. , 2020, Nanoscale.

[34]  P. Blom,et al.  Solution‐Processable 2D Materials Applied in Light‐Emitting Diodes and Solar Cells , 2020, Advanced Materials Technologies.

[35]  Zhi-yong Xu,et al.  Passivation of black phosphorus as organic-phase enzyme platform for bisphenol A determination. , 2020, Analytica chimica acta.

[36]  G. Jiang,et al.  Property-Activity Relationship of Black Phosphorus at the Nano-Bio Interface: From Molecules to Organisms. , 2020, Chemical reviews.

[37]  P. Chu,et al.  Edge-Rich Black Phosphorous for Photocatalytic Nitrogen Fixation. , 2020, The journal of physical chemistry letters.

[38]  Xiaoyan Zhang,et al.  Recent Advances in Chemical Functionalization of 2D Black Phosphorous Nanosheets , 2019, Advanced science.

[39]  Junjia Wang,et al.  Mid-infrared polarized emission from black phosphorus light-emitting diodes. , 2019, Nano letters.

[40]  Sungjoo Lee,et al.  Black phosphorus photodetector integrated with Au nanoparticles , 2019, Applied Physics Letters.

[41]  L. Liao,et al.  Black phosphorus electronics. , 2019, Science bulletin.

[42]  Runsheng Wang,et al.  High-speed black phosphorus field-effect transistors approaching ballistic limit , 2019, Science Advances.

[43]  M. Burghard,et al.  Gate-Tunable Tunneling Transistor Based on a Thin Black Phosphorus–SnSe2 Heterostructure , 2019, ACS applied materials & interfaces.

[44]  Yanjuan Zhang,et al.  Photoelectric properties of monolayer black phosphorus in visible regime at room temperature , 2019, AIP Advances.

[45]  C. Jin,et al.  Effective passivation of black phosphorus transistor against ambient degradation by an ultra-thin tin oxide film. , 2019, Science bulletin.

[46]  Sungjoo Lee,et al.  Versatile Doping Control of Black Phosphorus and Functional Junction Structures , 2019, The Journal of Physical Chemistry C.

[47]  Ashutosh Kumar Singh,et al.  Biocompatible and biodegradable inorganic nanostructures for nanomedicine: Silicon and black phosphorus , 2019, Nano Today.

[48]  D. K. Sang,et al.  Black Phosphorous/Indium Selenide Photoconductive Detector for Visible and Near‐Infrared Light with High Sensitivity , 2019, Advanced Optical Materials.

[49]  Xiaodong Hu,et al.  Gate-Tunable Photodetection/Voltaic Device Based on BP/MoTe2 Heterostructure. , 2019, ACS applied materials & interfaces.

[50]  Mengtao Sun,et al.  Two-dimensional black phosphorus: physical properties and applications , 2019, Materials Today Physics.

[51]  Hyoungsub Kim,et al.  P-N Junction Diode Using Plasma Boron-Doped Black Phosphorus for High-Performance Photovoltaic Devices. , 2019, ACS nano.

[52]  Lin Mei,et al.  2D Black Phosphorus–Based Biomedical Applications , 2019, Advanced Functional Materials.

[53]  Changgu Lee,et al.  Van der Waals Broken-Gap p-n Heterojunction Tunnel Diode Based on Black Phosphorus and Rhenium Disulfide. , 2019, ACS applied materials & interfaces.

[54]  Yi Shi,et al.  Observation of ballistic avalanche phenomena in nanoscale vertical InSe/BP heterostructures , 2019, Nature Nanotechnology.

[55]  Zhixian Zhou,et al.  Gate‐Tunable Photoresponse Time in Black Phosphorus–MoS2 Heterojunctions , 2018, Advanced Optical Materials.

[56]  X. Duan,et al.  High-Performance Black Phosphorus Field-Effect Transistors with Long-Term Air Stability. , 2018, Nano letters.

[57]  D. Akinwande,et al.  Anisotropic Electron-Phonon Interactions in Angle-Resolved Raman Study of Strained Black Phosphorus. , 2018, ACS nano.

[58]  P. Blom,et al.  Improved Hole Injection into Perovskite Light‐Emitting Diodes Using A Black Phosphorus Interlayer , 2018, Advanced Electronic Materials.

[59]  K. Ang,et al.  Recent Advances in Black Phosphorus‐Based Electronic Devices , 2018, Advanced Electronic Materials.

[60]  M. Long,et al.  Black Phosphorus Infrared Photodetectors with Fast Response and High Photoresponsivity , 2018, physica status solidi (RRL) – Rapid Research Letters.

[61]  Y. Mi,et al.  Black Phosphorus Quantum Dot/Ti3C2 MXene Nanosheet Composites for Efficient Electrochemical Lithium/Sodium‐Ion Storage , 2018, Advanced Energy Materials.

[62]  F. Xia,et al.  Progress on Black Phosphorus Photonics , 2018, Advanced Optical Materials.

[63]  Federico Capasso,et al.  Engineering phonon polaritons in van der Waals heterostructures to enhance in-plane optical anisotropy , 2018, Science Advances.

[64]  S. Cho,et al.  Preparation of Highly Stable Black Phosphorus by Gold Decoration for High‐Performance Thermoelectric Generators , 2018 .

[65]  Jong‐Soo Lee,et al.  High‐Performance Photovoltaic Effect with Electrically Balanced Charge Carriers in Black Phosphorus and WS2 Heterojunction , 2018, Advanced Materials Interfaces.

[66]  Su‐Ting Han,et al.  Phosphorene/ZnO Nano‐Heterojunctions for Broadband Photonic Nonvolatile Memory Applications , 2018, Advanced materials.

[67]  A. Hirsch,et al.  Effect of TCNQ Layer Cover on Oxidation Dynamics of Black Phosphorus , 2018, physica status solidi (RRL) - Rapid Research Letters.

[68]  Shengbai Zhang,et al.  Enhancing the ambient stability of few-layer black phosphorus by surface modification , 2018, RSC advances.

[69]  P. Debnath,et al.  Recent Advances in Black‐Phosphorus‐Based Photonics and Optoelectronics Devices , 2018 .

[70]  Yanqing Wu,et al.  Optimized Transport Properties in Lithium Doped Black Phosphorus Transistors , 2018, IEEE Electron Device Letters.

[71]  J. Eom,et al.  Temperature-Dependent and Gate-Tunable Rectification in a Black Phosphorus/WS2 van der Waals Heterojunction Diode. , 2018, ACS applied materials & interfaces.

[72]  P. Ye,et al.  Experimental analysis of the Schottky barrier height of metal contacts in black phosphorus field-effect transistors , 2018 .

[73]  William A. Goddard,et al.  Monolayer atomic crystal molecular superlattices , 2018, Nature.

[74]  Zhongfan Liu,et al.  Applications of Phosphorene and Black Phosphorus in Energy Conversion and Storage Devices , 2018 .

[75]  F. Ren,et al.  Two-Dimensionally Layered p-Black Phosphorus/n-MoS2/p-Black Phosphorus Heterojunctions. , 2018, ACS applied materials & interfaces.

[76]  Baoshun Zhang,et al.  Sulfur-Doped Black Phosphorus Field-Effect Transistors with Enhanced Stability. , 2018, ACS applied materials & interfaces.

[77]  J. Shapter,et al.  Black Phosphorus: Synthesis and Application for Solar Cells , 2018 .

[78]  T. Low,et al.  Anomalous Temperature Dependence in Metal-Black Phosphorus Contact. , 2018, Nano letters.

[79]  Kenji Watanabe,et al.  Minimizing residues and strain in 2D materials transferred from PDMS , 2018, Nanotechnology.

[80]  K. Ang,et al.  Pronounced Photovoltaic Effect in Electrically Tunable Lateral Black‐Phosphorus Heterojunction Diode , 2018 .

[81]  J. Shapter,et al.  Efficiency Enhancement of Single‐Walled Carbon Nanotube‐Silicon Heterojunction Solar Cells Using Microwave‐Exfoliated Few‐Layer Black Phosphorus , 2017 .

[82]  Meng Qiu,et al.  Fluorinated Phosphorene: Electrochemical Synthesis, Atomistic Fluorination, and Enhanced Stability. , 2017, Small.

[83]  L. Liao,et al.  Metal‐Ion‐Modified Black Phosphorus with Enhanced Stability and Transistor Performance , 2017, Advanced materials.

[84]  Pengfei Chen,et al.  The rising star of 2D black phosphorus beyond graphene: synthesis, properties and electronic applications , 2017 .

[85]  Yan Liu,et al.  Highly Efficient and Air-Stable Infrared Photodetector Based on 2D Layered Graphene-Black Phosphorus Heterostructure. , 2017, ACS applied materials & interfaces.

[86]  Zengxing Zhang,et al.  Floating-Gate Manipulated Graphene-Black Phosphorus Heterojunction for Nonvolatile Ambipolar Schottky Junction Memories, Memory Inverter Circuits, and Logic Rectifiers. , 2017, Nano letters.

[87]  Zhipei Sun,et al.  Black phosphorus ink formulation for inkjet printing of optoelectronics and photonics , 2017, Nature Communications.

[88]  P. Ye,et al.  How Important Is the Metal–Semiconductor Contact for Schottky Barrier Transistors: A Case Study on Few-Layer Black Phosphorus? , 2017, ACS omega.

[89]  Weida Hu,et al.  Highly polarization sensitive infrared photodetector based on black phosphorus-on-WSe2 photogate vertical heterostructure , 2017 .

[90]  X. Duan,et al.  Enhanced electrical characteristics of black phosphorus by polyaniline and protonic acid surface doping , 2017, 2017 IEEE 17th International Conference on Nanotechnology (IEEE-NANO).

[91]  Kai Zhang,et al.  Few-layer selenium-doped black phosphorus: synthesis, nonlinear optical properties and ultrafast photonics applications , 2017 .

[92]  F. Huo,et al.  Surface Functionalization of Black Phosphorus via Potassium toward High-Performance Complementary Devices. , 2017, Nano letters.

[93]  P. Ye,et al.  Reliable passivation of black phosphorus by thin hybrid coating , 2017, Nanotechnology.

[94]  Qing Hua Wang,et al.  A study of bilayer phosphorene stability under MoS2-passivation , 2017 .

[95]  Fabian Mooshammer,et al.  Femtosecond photo-switching of interface polaritons in black phosphorus heterostructures. , 2017, Nature nanotechnology.

[96]  Xu Guo,et al.  Two-Fold Anisotropy Governs Morphological Evolution and Stress Generation in Sodiated Black Phosphorus for Sodium Ion Batteries. , 2017, Nano letters.

[97]  Mark C Hersam,et al.  Solution-Based Processing of Monodisperse Two-Dimensional Nanomaterials. , 2017, Accounts of chemical research.

[98]  W. Choi,et al.  Air-stable few-layer black phosphorus phototransistor for near-infrared detection , 2017, Nanotechnology.

[99]  Yong-Wei Zhang,et al.  Al‐Doped Black Phosphorus p–n Homojunction Diode for High Performance Photovoltaic , 2017 .

[100]  Sungjoo Lee,et al.  Phosphorene/rhenium disulfide heterojunction-based negative differential resistance device for multi-valued logic , 2016, Nature Communications.

[101]  Baoshun Zhang,et al.  Te‐Doped Black Phosphorus Field‐Effect Transistors , 2016, Advanced materials.

[102]  Tibor Grasser,et al.  Long-Term Stability and Reliability of Black Phosphorus Field-Effect Transistors. , 2016, ACS nano.

[103]  F. Telesio,et al.  Decoration of exfoliated black phosphorus with nickel nanoparticles and its application in catalysis. , 2016, Chemical communications.

[104]  Jinlan Wang,et al.  Light-Induced Ambient Degradation of Few-Layer Black Phosphorus: Mechanism and Protection. , 2016, Angewandte Chemie.

[105]  Kai Zhang,et al.  Selenium-Doped Black Phosphorus for High-Responsivity 2D Photodetectors. , 2016, Small.

[106]  Zonghai Chen,et al.  Nanostructured Black Phosphorus/Ketjenblack-Multiwalled Carbon Nanotubes Composite as High Performance Anode Material for Sodium-Ion Batteries. , 2016, Nano letters.

[107]  G. Schatz,et al.  Covalent functionalization and passivation of exfoliated black phosphorus via aryl diazonium chemistry. , 2016, Nature chemistry.

[108]  Jian Zhu,et al.  Stable aqueous dispersions of optically and electronically active phosphorene , 2016, Proceedings of the National Academy of Sciences.

[109]  P. Chu,et al.  Surface Coordination of Black Phosphorus for Robust Air and Water Stability. , 2016, Angewandte Chemie.

[110]  Hao Li,et al.  Near-Infrared Photodetector Based on MoS2/Black Phosphorus Heterojunction , 2016 .

[111]  Rostislav A. Doganov,et al.  Electron Doping of Ultrathin Black Phosphorus with Cu Adatoms. , 2016, Nano letters.

[112]  Xin Xin,et al.  Two-step heating synthesis of sub-3 millimeter-sized orthorhombic black phosphorus single crystal by chemical vapor transport reaction method , 2016, Science China Materials.

[113]  Y. Chauhan,et al.  Thickness and electric-field-dependent polarizability and dielectric constant in phosphorene , 2016, 1602.09073.

[114]  Tianjiao Wang,et al.  Anisotropic photocurrent response at black phosphorus-MoS2 p-n heterojunctions. , 2015, Nanoscale.

[115]  Zhongyuan Liu,et al.  Enhanced stability of black phosphorus field-effect transistors with SiO2 passivation , 2015, Nanotechnology.

[116]  F. Xia,et al.  Synthesis of thin-film black phosphorus on a flexible substrate , 2015, 1508.05171.

[117]  A. Castellanos-Gómez,et al.  Black Phosphorus: Narrow Gap, Wide Applications. , 2015, The journal of physical chemistry letters.

[118]  A. H. Castro Neto,et al.  Large Frequency Change with Thickness in Interlayer Breathing Mode--Significant Interlayer Interactions in Few Layer Black Phosphorus. , 2015, Nano letters.

[119]  L. Li,et al.  Quantum Hall effect in black phosphorus two-dimensional electron system. , 2015, Nature nanotechnology.

[120]  M. Hersam,et al.  Solvent exfoliation of electronic-grade, two-dimensional black phosphorus. , 2015, ACS nano.

[121]  Mohammad Asadi,et al.  High‐Quality Black Phosphorus Atomic Layers by Liquid‐Phase Exfoliation , 2015, Advanced materials.

[122]  Y. Yong,et al.  Strain-induced semiconductor to metal transition in few-layer black phosphorus from first principles , 2015 .

[123]  A. Neto,et al.  Air-stable transport in graphene-contacted, fully encapsulated ultrathin black phosphorus-based field-effect transistors. , 2014, ACS nano.

[124]  Yingying Wu,et al.  High-quality sandwiched black phosphorus heterostructure and its quantum oscillations , 2014, Nature Communications.

[125]  L. Lauhon,et al.  Effective passivation of exfoliated black phosphorus transistors against ambient degradation. , 2014, Nano letters.

[126]  P. Ye,et al.  Semiconducting black phosphorus: synthesis, transport properties and electronic applications. , 2014, Chemical Society reviews.

[127]  X. Zeng,et al.  Structure and stability of two dimensional phosphorene with O or NH functionalization , 2014, 1409.7719.

[128]  Jie Sun,et al.  Broadband Linear-Dichroic Photodetector in a Black Phosphorus Vertical p-n Junction , 2014, 1409.4729.

[129]  M. Demarteau,et al.  Tunable transport gap in phosphorene. , 2014, Nano letters.

[130]  P. Ajayan,et al.  Black phosphorus-monolayer MoS2 van der Waals heterojunction p-n diode. , 2014, ACS nano.

[131]  Harold S. Park,et al.  Negative poisson’s ratio in single-layer black phosphorus , 2014, Nature Communications.

[132]  G. Steele,et al.  Isolation and characterization of few-layer black phosphorus , 2014, 1403.0499.

[133]  R. Soklaski,et al.  Layer-Controlled Band Gap and Anisotropic Excitons in Phosphorene , 2014, 1402.4192.

[134]  F. Xia,et al.  Rediscovering black phosphorus as an anisotropic layered material for optoelectronics and electronics , 2014, Nature Communications.

[135]  Vibhor Singh,et al.  Deterministic transfer of two-dimensional materials by all-dry viscoelastic stamping , 2013, 1311.4829.

[136]  A. Morita,et al.  Two-Dimensional Anderson Localization in Black Phosphorus Crystals Prepared by Bismuth-Flux Method , 1991 .

[137]  R. Keyes The Electrical Properties of Black Phosphorus , 1953 .

[138]  P. W. Bridgman TWO NEW MODIFICATIONS OF PHOSPHORUS. , 1914 .

[139]  Li Jun-yi,et al.  Methods of transferring two-dimensional materials , 2021 .

[140]  B. Bian,et al.  Width dependent rectifying behavior in Schottky heterojunction based on black phosphorene , 2020 .

[141]  Supplementary Figures , 2022 .