Numerical modeling of the wind flow over a transverse dune

Transverse dunes, which form under unidirectional winds and have fixed profile in the direction perpendicular to the wind, occur on all celestial objects of our solar system where dunes have been detected. Here we perform a numerical study of the average turbulent wind flow over a transverse dune by means of computational fluid dynamics simulations. We find that the length of the zone of recirculating flow at the dune lee — the separation bubble — displays a surprisingly strong dependence on the wind shear velocity, u*: it is nearly independent of u* for shear velocities within the range between 0.2 m/s and 0.8 m/s but increases linearly with u* for larger shear velocities. Our calculations show that transport in the direction opposite to dune migration within the separation bubble can be sustained if u* is larger than approximately 0.39 m/s, whereas a larger value of u* (about 0.49 m/s) is required to initiate this reverse transport.

[1]  J. Hunt,et al.  Turbulent wind flow over a low hill , 1975 .

[2]  Hans Jürgen Herrmann,et al.  Flow separation in the lee side of transverse dunes: A numerical investigation , 2006 .

[3]  H. Heywood The Physics of Blown Sand and Desert Dunes , 1941, Nature.

[4]  José S. Andrade,et al.  Wind velocity and sand transport on a barchan dune , 2003 .

[5]  B. Launder,et al.  The numerical computation of turbulent flows , 1990 .

[6]  H. J. Herrmann,et al.  Calculation of the separation streamlines of barchans and transverse dunes , 2004 .

[7]  Kenneth Pye,et al.  Aeolian sand and sand dunes , 1990 .

[8]  H J Herrmann,et al.  Continuum saltation model for sand dunes. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[9]  Jon D. Pelletier,et al.  Controls on the height and spacing of eolian ripples and transverse dunes: A numerical modeling investigation , 2009 .

[10]  Edwin Dinwiddie McKee,et al.  A study of global sand seas , 1979 .

[11]  P. Claudin,et al.  On aeolian transport: Grain-scale interactions, dynamical mechanisms and scaling laws , 2011 .

[12]  Ingo Rehberg,et al.  Barchan dunes in two dimensions: experimental tests for minimal models. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.

[13]  G. Kocurek,et al.  Toward a model for airflow on the lee side of aeolian dunes , 1996 .

[14]  Hans Jürgen Herrmann,et al.  Profile measurement and simulation of a transverse dune field in the Lençóis Maranhenses , 2006 .

[15]  S. Bishop,et al.  Simulation of the effect of wind speedup in the formation of transverse dune fields , 2000 .

[16]  Giles F.S. Wiggs Desert dune processes and dynamics , 2001 .

[17]  W. L. Webb,et al.  The physics of atmospheres , 1980 .

[18]  Difference in the wind speeds required for initiation versus continuation of sand transport on mars: implications for dunes and dust storms. , 2010, Physical review letters.

[19]  Stuart N. Lane,et al.  Investigation of controls on secondary circulation in a simple confluence geometry using a three-dimensional numerical model , 1998 .

[20]  Suzanne J.M.H. Hulscher,et al.  A parameterization of flow separation over subaqueous dunes , 2007 .

[21]  B. R. White,et al.  Saltation threshold on Earth, Mars and Venus , 1982 .

[22]  I. Walker,et al.  Secondary flow deflection in the lee of transverse dunes with implications for dune morphodynamics and migration , 2013 .

[23]  Ian J. Walker,et al.  Simulation and measurement of surface shear stress over isolated and closely spaced transverse dunes in a wind tunnel , 2003 .

[24]  J. Kok,et al.  The physics of wind-blown sand and dust , 2012, Reports on progress in physics. Physical Society.

[25]  F. Lien,et al.  Assessment of turbulence-transport models including non-linear rng eddy-viscosity formulation and second-moment closure for flow over a backward-facing step , 1994 .

[26]  H. Tsoar,et al.  Types of Aeolian Sand Dunes and Their Formation , 2001 .

[27]  Niels Nielsen R. A. Bagnold: »The Physics of Blown Sand and Desert Dunes« Methuen & Co., London, 1954. 265 sider. 16 billeder og 84 dia grammer. 22X14,5 cm. Pris: 30 sh. , 1954 .

[28]  José S Andrade,et al.  Aeolian transport layer. , 2006, Physical review letters.

[29]  Ian J. Walker,et al.  Dynamics of secondary airflow and sediment transport over and in the lee of transverse dunes , 2002 .

[30]  S. Douady,et al.  Formation and stability of transverse and longitudinal sand dunes , 2010 .

[31]  The shape of barchan dunes , 2005, cond-mat/0501152.

[32]  D. Parsons,et al.  Numerical modelling of flow structures over idealized transverse aeolian dunes of varying geometry , 2004 .

[33]  Hans J. Herrmann,et al.  A continuous model for sand dunes: Review, new developments and application to barchan dunes and barchan dune fields , 2010 .

[34]  K. Edgett,et al.  Evidence for indurated sand dunes in the Martian north polar region , 2006 .

[35]  A. Goudie,et al.  Varieties of barchan form in the Namib Desert and on Mars , 2009 .

[36]  Modelling transverse dunes , 2003, cond-mat/0301589.

[37]  A. Shields,et al.  Application of similarity principles and turbulence research to bed-load movement , 1936 .

[38]  H. Herrmann,et al.  Minimal model for aeolian sand dunes. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[39]  B. Andreotti,et al.  Measurements of the aeolian sand transport saturation length , 2008, 0806.3931.

[40]  J. S. Andrade,et al.  Transverse instability of dunes. , 2011, Physical review letters.

[41]  Wei Zhu,et al.  A Scale-Coupled Method for Simulation of the Formation and Evolution of Aeolian Dune Field , 2009 .

[42]  D. Carruthers,et al.  Air flow and sand transport over sand-dunes , 1991 .

[43]  José S Andrade,et al.  Giant saltation on Mars , 2008, Proceedings of the National Academy of Sciences.

[44]  Hernan A. Makse,et al.  Grain segregation mechanism in aeolian sand ripples , 1998, cond-mat/9809423.