Accurate and efficient analysis of the upward heat flow in InGaP/GaAs HBTs through an automated FEM‐based tool and Design of Experiments

[1]  Rudiger Quay,et al.  Analysis and Simulation of Heterostructure Devices , 2004 .

[2]  Taisuke Iwai,et al.  High-reliability InGaP/GaAs HBTs fabricated by self-aligned process , 1994, Proceedings of 1994 IEEE International Electron Devices Meeting.

[3]  J. A. Higgins Thermal properties of power HBT's , 1993 .

[4]  N. Pan,et al.  Migration from an AlGaAs to an InGaP emitter HBT IC process for improved reliability , 1998, GaAs IC Symposium. IEEE Gallium Arsenide Integrated Circuit Symposium. 20th Annual. Technical Digest 1998 (Cat. No.98CH36260).

[5]  Alessandro Magnani,et al.  Simulation comparison of InGaP/GaAs HBT thermal performance in wire-bonding and flip-chip technologies , 2017, Microelectron. Reliab..

[6]  Taeseok Kim,et al.  Heat flow model for pulsed laser melting and rapid solidification of ion implanted GaAs , 2010 .

[7]  Vincenzo d'Alessandro,et al.  Evaluation of thermal balancing techniques in InGaP/GaAs HBT power arrays for wireless handset power amplifiers , 2013, Microelectron. Reliab..

[8]  H. Blanck,et al.  Flip-chip mounted 26 V GaInP/GaAs power HBTs , 2004, IEDM Technical Digest. IEEE International Electron Devices Meeting, 2004..

[9]  L. L. Liou,et al.  Thermal analysis and characterization of thermally shunted AlGaAs/GaAs heterojunction bipolar transistors , 1995, Proceedings IEEE/Cornell Conference on Advanced Concepts in High Speed Semiconductor Devices and Circuits.

[10]  B. Vijayakumar,et al.  Device and package level thermal modeling of GaAs Power Amplifiers , 2004, The Ninth Intersociety Conference on Thermal and Thermomechanical Phenomena In Electronic Systems (IEEE Cat. No.04CH37543).

[11]  S. Nelson,et al.  Current gain collapse in microwave multifinger heterojunction bipolar transistors operated at very high power densities , 1993 .

[12]  R. Anholt,et al.  HBT thermal element design using an electro/thermal simulator , 1998 .

[13]  L. L. Liou,et al.  The effect of thermal shunt on the current instability of multiple-emitter-finger heterojunction bipolar transistors , 1993, 1993 Proceedings of IEEE Bipolar/BiCMOS Circuits and Technology Meeting.

[14]  Paul-Alain Rolland,et al.  Transient analysis of collector current collapse in multifinger HBT's , 1998 .

[15]  F. Ali,et al.  Flip-chip X-band operation of thermally-shunted microwave HBT's with sub-micron emitters , 1996, 1996 IEEE MTT-S International Microwave Symposium Digest.

[16]  W. Liu,et al.  Near-ideal I-V characteristics of GaInP/GaAs heterojunction bipolar transistors , 1992, IEEE Electron Device Letters.

[17]  V. d'Alessandro,et al.  Influence of Concurrent Electrothermal and Avalanche Effects on the Safe Operating Area of Multifinger Bipolar Transistors , 2009, IEEE Transactions on Electron Devices.

[18]  Sang-Woong Yoon Static and Dynamic Error Vector Magnitude Behavior of 2.4-GHz Power Amplifier , 2007, IEEE Transactions on Microwave Theory and Techniques.

[19]  V. d'Alessandro,et al.  Analysis of the Influence of Layout and Technology Parameters on the Thermal Impedance of GaAs HBT/BiFET Using a Highly-Efficient Tool , 2014, 2014 IEEE Compound Semiconductor Integrated Circuit Symposium (CSICS).

[20]  M. K. Jackson,et al.  Weak scaling of thermal resistance in AlGaAs-GaAs heterojunction bipolar transistors , 2000, Proceedings of the 2000 BIPOLAR/BiCMOS Circuits and Technology Meeting (Cat. No.00CH37124).

[21]  V. d'Alessandro,et al.  Numerical analysis of the thermal behavior sensitivity to technology parameters and operating conditions in InGaP/GaAs HBTs , 2017, 2017 IEEE Compound Semiconductor Integrated Circuit Symposium (CSICS).

[22]  Wen-Chau Liu,et al.  The collapse of current gain in multi-finger heterojunction bipolar transistors: its substrate temperature dependence, instability criteria, and modeling , 1994 .

[23]  U. Seiler,et al.  Thermally triggered collapse of collector current in power heterojunction bipolar transistors , 1993, 1993 Proceedings of IEEE Bipolar/BiCMOS Circuits and Technology Meeting.

[24]  R. Scherer,et al.  Design and fabrication of thermally-stable AlGaAs/GaAs microwave power HBTs , 1993, Proceedings of IEEE/Cornell Conference on Advanced Concepts in High Speed Semiconductor Devices and Circuits.

[25]  Matthew T. Ozalas,et al.  The Impact of Electro-Thermal Coupling on HBT Power Amplifiers , 2014, 2014 IEEE Compound Semiconductor Integrated Circuit Symposium (CSICS).

[26]  K. Sakuno,et al.  Bump heat sink technology - A novel assembly technology suitable for power HBTs , 1993, 15th Annual GaAs IC Symposium.

[27]  Wolfgang Fichtner,et al.  PARDISO: a high-performance serial and parallel sparse linear solver in semiconductor device simulation , 2001, Future Gener. Comput. Syst..

[28]  Jung-Hua Chou,et al.  An effective device design for thermal management of multifinger InGaP/GaAs collector‐up HBTs , 2013 .

[29]  S. Martellucci,et al.  Photoacoustic optical and thermal characterization of Si and GaAs ion implanted layers , 1987 .

[30]  Wen-Chau Liu,et al.  Temperature dependences of current gains in GaInP/GaAs and AlGaAs/GaAs heterojunction bipolar transistors , 1993 .

[31]  L. L. Liou,et al.  Thermal stability analysis of AlGaAs/GaAs heterojunction bipolar transistors with multiple emitter fingers , 1994 .

[32]  Paul-Alain Rolland,et al.  3D Finite-difference electrothermal model for multifinger HBTs with thermal shunt and emitter ballast resistance , 1998 .

[33]  M. Fresina,et al.  Trends in GaAs HBTs for wireless and RF , 2011, 2011 IEEE Bipolar/BiCMOS Circuits and Technology Meeting.

[34]  Dritan Celo,et al.  A simplified model for the effect of interfinger metal on maximum temperature rise in a multifinger bipolar transistor , 2003, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..

[35]  Alessandro Magnani,et al.  Fast novel thermal analysis simulation tool for integrated circuits (FANTASTIC) , 2014, 20th International Workshop on Thermal Investigations of ICs and Systems.

[36]  W. Liu,et al.  The use of base ballasting to prevent the collapse of current gain in AlGaAs/GaAs heterojunction bipolar transistors , 1996 .

[37]  P. Ikalainen,et al.  Novel HBT with reduced thermal impedance , 1995 .

[38]  T. Quach,et al.  Thermal management of microwave power heterojunction bipolar transistors , 1997 .

[39]  B. Yeats,et al.  Inclusion of topside metal heat spreading in the determination of HBT temperatures by electrical and geometrical methods [GaAs devices] , 1999, GaAs IC Symposium. IEEE Gallium Arsenide Integrated Circuit Symposium. 21st Annual. Technical Digest 1999 (Cat. No.99CH36369).

[40]  V. d'Alessandro,et al.  Influence of layout and technology parameters on the thermal behavior of InGaP/GaAs HBTs , 2017, 2017 13th Conference on Ph.D. Research in Microelectronics and Electronics (PRIME).

[41]  Hadis Morkoç,et al.  The effects of surface metallization on the thermal behavior of GaAs microwave power devices , 1994 .

[42]  P. M. Asbeck,et al.  Experimental I-V characteristics of AlGaAs/GaAs and GaInP/GaAs (D)HBTs with thin bases , 2000 .

[43]  Bongkoo Kang,et al.  Emitter structure of power heterojunction bipolar transistor for enhancement of thermal stability , 2001 .

[44]  H. Morkoç,et al.  Thermal design studies of high-power heterojunction bipolar transistors , 1989 .