Accurate and efficient analysis of the upward heat flow in InGaP/GaAs HBTs through an automated FEM‐based tool and Design of Experiments
暂无分享,去创建一个
Lorenzo Codecasa | Vincenzo d'Alessandro | Peter J. Zampardi | Antonio Pio Catalano | Brian Moser | V. d’Alessandro | P. Zampardi | L. Codecasa | A. P. Catalano | B. Moser
[1] Rudiger Quay,et al. Analysis and Simulation of Heterostructure Devices , 2004 .
[2] Taisuke Iwai,et al. High-reliability InGaP/GaAs HBTs fabricated by self-aligned process , 1994, Proceedings of 1994 IEEE International Electron Devices Meeting.
[3] J. A. Higgins. Thermal properties of power HBT's , 1993 .
[4] N. Pan,et al. Migration from an AlGaAs to an InGaP emitter HBT IC process for improved reliability , 1998, GaAs IC Symposium. IEEE Gallium Arsenide Integrated Circuit Symposium. 20th Annual. Technical Digest 1998 (Cat. No.98CH36260).
[5] Alessandro Magnani,et al. Simulation comparison of InGaP/GaAs HBT thermal performance in wire-bonding and flip-chip technologies , 2017, Microelectron. Reliab..
[6] Taeseok Kim,et al. Heat flow model for pulsed laser melting and rapid solidification of ion implanted GaAs , 2010 .
[7] Vincenzo d'Alessandro,et al. Evaluation of thermal balancing techniques in InGaP/GaAs HBT power arrays for wireless handset power amplifiers , 2013, Microelectron. Reliab..
[8] H. Blanck,et al. Flip-chip mounted 26 V GaInP/GaAs power HBTs , 2004, IEDM Technical Digest. IEEE International Electron Devices Meeting, 2004..
[9] L. L. Liou,et al. Thermal analysis and characterization of thermally shunted AlGaAs/GaAs heterojunction bipolar transistors , 1995, Proceedings IEEE/Cornell Conference on Advanced Concepts in High Speed Semiconductor Devices and Circuits.
[10] B. Vijayakumar,et al. Device and package level thermal modeling of GaAs Power Amplifiers , 2004, The Ninth Intersociety Conference on Thermal and Thermomechanical Phenomena In Electronic Systems (IEEE Cat. No.04CH37543).
[11] S. Nelson,et al. Current gain collapse in microwave multifinger heterojunction bipolar transistors operated at very high power densities , 1993 .
[12] R. Anholt,et al. HBT thermal element design using an electro/thermal simulator , 1998 .
[13] L. L. Liou,et al. The effect of thermal shunt on the current instability of multiple-emitter-finger heterojunction bipolar transistors , 1993, 1993 Proceedings of IEEE Bipolar/BiCMOS Circuits and Technology Meeting.
[14] Paul-Alain Rolland,et al. Transient analysis of collector current collapse in multifinger HBT's , 1998 .
[15] F. Ali,et al. Flip-chip X-band operation of thermally-shunted microwave HBT's with sub-micron emitters , 1996, 1996 IEEE MTT-S International Microwave Symposium Digest.
[16] W. Liu,et al. Near-ideal I-V characteristics of GaInP/GaAs heterojunction bipolar transistors , 1992, IEEE Electron Device Letters.
[17] V. d'Alessandro,et al. Influence of Concurrent Electrothermal and Avalanche Effects on the Safe Operating Area of Multifinger Bipolar Transistors , 2009, IEEE Transactions on Electron Devices.
[18] Sang-Woong Yoon. Static and Dynamic Error Vector Magnitude Behavior of 2.4-GHz Power Amplifier , 2007, IEEE Transactions on Microwave Theory and Techniques.
[19] V. d'Alessandro,et al. Analysis of the Influence of Layout and Technology Parameters on the Thermal Impedance of GaAs HBT/BiFET Using a Highly-Efficient Tool , 2014, 2014 IEEE Compound Semiconductor Integrated Circuit Symposium (CSICS).
[20] M. K. Jackson,et al. Weak scaling of thermal resistance in AlGaAs-GaAs heterojunction bipolar transistors , 2000, Proceedings of the 2000 BIPOLAR/BiCMOS Circuits and Technology Meeting (Cat. No.00CH37124).
[21] V. d'Alessandro,et al. Numerical analysis of the thermal behavior sensitivity to technology parameters and operating conditions in InGaP/GaAs HBTs , 2017, 2017 IEEE Compound Semiconductor Integrated Circuit Symposium (CSICS).
[22] Wen-Chau Liu,et al. The collapse of current gain in multi-finger heterojunction bipolar transistors: its substrate temperature dependence, instability criteria, and modeling , 1994 .
[23] U. Seiler,et al. Thermally triggered collapse of collector current in power heterojunction bipolar transistors , 1993, 1993 Proceedings of IEEE Bipolar/BiCMOS Circuits and Technology Meeting.
[24] R. Scherer,et al. Design and fabrication of thermally-stable AlGaAs/GaAs microwave power HBTs , 1993, Proceedings of IEEE/Cornell Conference on Advanced Concepts in High Speed Semiconductor Devices and Circuits.
[25] Matthew T. Ozalas,et al. The Impact of Electro-Thermal Coupling on HBT Power Amplifiers , 2014, 2014 IEEE Compound Semiconductor Integrated Circuit Symposium (CSICS).
[26] K. Sakuno,et al. Bump heat sink technology - A novel assembly technology suitable for power HBTs , 1993, 15th Annual GaAs IC Symposium.
[27] Wolfgang Fichtner,et al. PARDISO: a high-performance serial and parallel sparse linear solver in semiconductor device simulation , 2001, Future Gener. Comput. Syst..
[28] Jung-Hua Chou,et al. An effective device design for thermal management of multifinger InGaP/GaAs collector‐up HBTs , 2013 .
[29] S. Martellucci,et al. Photoacoustic optical and thermal characterization of Si and GaAs ion implanted layers , 1987 .
[30] Wen-Chau Liu,et al. Temperature dependences of current gains in GaInP/GaAs and AlGaAs/GaAs heterojunction bipolar transistors , 1993 .
[31] L. L. Liou,et al. Thermal stability analysis of AlGaAs/GaAs heterojunction bipolar transistors with multiple emitter fingers , 1994 .
[32] Paul-Alain Rolland,et al. 3D Finite-difference electrothermal model for multifinger HBTs with thermal shunt and emitter ballast resistance , 1998 .
[33] M. Fresina,et al. Trends in GaAs HBTs for wireless and RF , 2011, 2011 IEEE Bipolar/BiCMOS Circuits and Technology Meeting.
[34] Dritan Celo,et al. A simplified model for the effect of interfinger metal on maximum temperature rise in a multifinger bipolar transistor , 2003, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..
[35] Alessandro Magnani,et al. Fast novel thermal analysis simulation tool for integrated circuits (FANTASTIC) , 2014, 20th International Workshop on Thermal Investigations of ICs and Systems.
[36] W. Liu,et al. The use of base ballasting to prevent the collapse of current gain in AlGaAs/GaAs heterojunction bipolar transistors , 1996 .
[37] P. Ikalainen,et al. Novel HBT with reduced thermal impedance , 1995 .
[38] T. Quach,et al. Thermal management of microwave power heterojunction bipolar transistors , 1997 .
[39] B. Yeats,et al. Inclusion of topside metal heat spreading in the determination of HBT temperatures by electrical and geometrical methods [GaAs devices] , 1999, GaAs IC Symposium. IEEE Gallium Arsenide Integrated Circuit Symposium. 21st Annual. Technical Digest 1999 (Cat. No.99CH36369).
[40] V. d'Alessandro,et al. Influence of layout and technology parameters on the thermal behavior of InGaP/GaAs HBTs , 2017, 2017 13th Conference on Ph.D. Research in Microelectronics and Electronics (PRIME).
[41] Hadis Morkoç,et al. The effects of surface metallization on the thermal behavior of GaAs microwave power devices , 1994 .
[42] P. M. Asbeck,et al. Experimental I-V characteristics of AlGaAs/GaAs and GaInP/GaAs (D)HBTs with thin bases , 2000 .
[43] Bongkoo Kang,et al. Emitter structure of power heterojunction bipolar transistor for enhancement of thermal stability , 2001 .
[44] H. Morkoç,et al. Thermal design studies of high-power heterojunction bipolar transistors , 1989 .