Interpolation in non-classical logics

We discuss the interpolation property on some important families of non classical logics, such as intuitionistic, modal, fuzzy, and linear logics. A special paragraph is devoted to a generalization of the interpolation property, uniform interpolation.

[1]  B. T. Cate,et al.  Model theory for extended modal languages , 2005 .

[2]  Leon Henkin,et al.  An extension of the Craig-Lyndon interpolation theorem , 1963, Journal of Symbolic Logic.

[3]  Silvio Ghilardi,et al.  Undefinability of propositional quantifiers in the modal system S4 , 1995, Stud Logica.

[4]  Marek W. Zawadowski,et al.  Sheaves, games, and model completions , 2002 .

[5]  Kit Fine,et al.  Failures of the interpolation lemma in quantified modal logic , 1979, Journal of Symbolic Logic.

[6]  L. L. Maksimova,et al.  Temporal logics with “the next” operator do not have interpolation or the Beth property , 1991 .

[7]  Dirk Roorda Interpolation in Fragments of Classical Linear Logic , 1994, J. Symb. Log..

[8]  Carsten Lutz,et al.  Conservative extensions in modal logic , 2006, Advances in Modal Logic.

[9]  Roy Dyckhoff,et al.  Contraction-free sequent calculi for intuitionistic logic , 1992, Journal of Symbolic Logic.

[10]  G. Priest An introduction to non-classical logic , 2001 .

[11]  Gerard R. Renardel de Lavalette,et al.  Interpolation in fragments of intuitionistic propositional logic , 1987, Journal of Symbolic Logic.

[12]  L. Maksimova Craig's theorem in superintuitionistic logics and amalgamable varieties of pseudo-boolean algebras , 1977 .

[13]  Helmut Veith,et al.  Interpolation in fuzzy logic , 1999, Arch. Math. Log..

[14]  Kurt Schütte Der Interpolationssatz der intuitionistischen Prädikatenlogik , 1962 .

[15]  A. Visser Bisimulations, model descriptions and propositional quantifiers , 1996 .

[16]  D. Gabbay Semantic Proof of The Craig Interpolation Theorem for Intuitionistic Logic and Extensions. Part I , 1971 .

[17]  Maarten Marx,et al.  Interpolation in Modal Logic , 1999, AMAST.

[18]  Wolfgang Rautenberg,et al.  Modal tableau calculi and interpolation , 1983, J. Philos. Log..

[19]  Marco Hollenberg,et al.  Logical questions concerning the μ-calculus: Interpolation, Lyndon and Łoś-Tarski , 2000, Journal of Symbolic Logic.

[20]  Maarten Marx,et al.  Repairing the interpolation theorem in quantified modal logic , 2003, Ann. Pure Appl. Log..

[21]  Dov M. Gabbay,et al.  Interpolation and definability , 2005 .

[22]  Andrew M. Pitts,et al.  On an interpretation of second order quantification in first order intuitionistic propositional logic , 1992, Journal of Symbolic Logic.

[23]  M. de Rijke,et al.  interpolation and bisimulation in temporal logic , 1998 .

[24]  Albert Visser Löb's Logic Meets the µ-Calculus , 2005, Processes, Terms and Cycles.