Quantum criticality in twisted transition metal dichalcogenides.

[1]  A. Neto,et al.  Tunable van Hove singularities and correlated states in twisted monolayer–bilayer graphene , 2021, Nature Physics.

[2]  P. Kim,et al.  Electric field–tunable superconductivity in alternating-twist magic-angle trilayer graphene , 2021, Science.

[3]  Kenji Watanabe,et al.  Tunable strongly coupled superconductivity in magic-angle twisted trilayer graphene , 2021, Nature.

[4]  S. Das Sarma,et al.  Interaction-Driven Filling-Induced Metal-Insulator Transitions in 2D Moiré Lattices. , 2020, Physical review letters.

[5]  Kenji Watanabe,et al.  Nematicity and competing orders in superconducting magic-angle graphene , 2020, Science.

[6]  S. Paschen,et al.  Quantum phases driven by strong correlations , 2020, Nature Reviews Physics.

[7]  C. Varma Colloquium : Linear in temperature resistivity and associated mysteries including high temperature superconductivity , 2020 .

[8]  P. Kim,et al.  Tunable spin-polarized correlated states in twisted double bilayer graphene , 2020, Nature.

[9]  Kenji Watanabe,et al.  Correlated electronic phases in twisted bilayer transition metal dichalcogenides , 2020, Nature Materials.

[10]  Kenji Watanabe,et al.  Tunable correlated states and spin-polarized phases in twisted bilayer–bilayer graphene , 2020, Nature.

[11]  Xiaodong Xu,et al.  Electrically tunable correlated and topological states in twisted monolayer–bilayer graphene , 2020, Nature Physics.

[12]  S. Das Sarma,et al.  Band topology, Hubbard model, Heisenberg model, and Dzyaloshinskii-Moriya interaction in twisted bilayer WSe2 , 2020, 2004.04168.

[13]  J. Shan,et al.  Simulation of Hubbard model physics in WSe2/WS2 moiré superlattices , 2020, Nature.

[14]  Kenji Watanabe,et al.  Flat bands in twisted bilayer transition metal dichalcogenides , 2019, Nature Physics.

[15]  Kenji Watanabe,et al.  Mott and generalized Wigner crystal states in WSe2/WS2 moiré superlattices , 2019, Nature.

[16]  Kenji Watanabe,et al.  Correlated states in twisted double bilayer graphene , 2019, Nature Physics.

[17]  Kenji Watanabe,et al.  Strange Metal in Magic-Angle Graphene with near Planckian Dissipation. , 2019, Physical review letters.

[18]  T. Taniguchi,et al.  Large linear-in-temperature resistivity in twisted bilayer graphene , 2019, Nature Physics.

[19]  T. Taniguchi,et al.  Maximized electron interactions at the magic angle in twisted bilayer graphene , 2018, Nature.

[20]  Kenji Watanabe,et al.  Correlated Insulating States in Twisted Double Bilayer Graphene. , 2019, Physical review letters.

[21]  S. Sarma,et al.  Phonon-induced giant linear-in- T resistivity in magic angle twisted bilayer graphene: Ordinary strangeness and exotic superconductivity , 2018, Physical Review B.

[22]  D. Graf,et al.  Tuning superconductivity in twisted bilayer graphene , 2018, Science.

[23]  Feng Wang,et al.  Evidence of a gate-tunable Mott insulator in a trilayer graphene moiré superlattice , 2018, Nature Physics.

[24]  J. Betts,et al.  Scale-invariant magnetoresistance in a cuprate superconductor , 2017, Science.

[25]  S. Banerjee,et al.  Density-Dependent Quantum Hall States and Zeeman Splitting in Monolayer and Bilayer WSe_{2}. , 2017, Physical review letters.

[26]  S. Banerjee,et al.  van der Waals Heterostructures with High Accuracy Rotational Alignment. , 2016, Nano letters.

[27]  Amritesh Rai,et al.  High-Mobility Holes in Dual-Gated WSe2 Field-Effect Transistors. , 2015, ACS nano.

[28]  R. McDonald,et al.  Magnetoresistance near a quantum critical point , 2014, 1412.6484.

[29]  G. Burkard,et al.  k·p theory for two-dimensional transition metal dichalcogenide semiconductors , 2014, 1410.6666.

[30]  K. L. Shepard,et al.  One-Dimensional Electrical Contact to a Two-Dimensional Material , 2013, Science.

[31]  A. P. Mackenzie,et al.  Similarity of Scattering Rates in Metals Showing T-Linear Resistivity , 2013, Science.

[32]  L. Taillefer Scattering and Pairing in Cuprate Superconductors , 2010, 1003.2972.

[33]  T. Senthil,et al.  Theory of a continuous Mott transition in two dimensions , 2008, 0804.1555.

[34]  D. Sénéchal,et al.  Hubbard model on the triangular lattice: spiral order and spin liquid. , 2007, Physical review letters.

[35]  O. Motrunich Variational study of triangular lattice spin-1/2 model with ring exchanges and spin liquid state in kappa-(ET)2Cu2(CN)3 , 2004, cond-mat/0412556.

[36]  J. Zaanen Superconductivity: Why the temperature is high , 2004, Nature.

[37]  Masatoshi Imada,et al.  Metal-insulator transitions , 1998 .