The Haunted Swamps of Heuristics: Uncertainty in Problem Solving

In scientific visualization the key task of research is the provision of insight into a problem. Finding the solution to a problem may be seen as finding a path through some rugged terrain which contains mountains, chasms, swamps, and few flatlands. This path—an algorithm discovered by the researcher—helps users to easily move around this unknown area. If this way is a wide road paved with stones it will be used for a long time by many travelers. However, a narrow footpath leading through deep forests and deadly swamps will attract only a few adventure seekers. There are many different paths with different levels of comfort, length, and stability, which are uncertain during the research process. Finding a systematic way to deal with this uncertainty can greatly assist the search for a safe path which is in our case the development of a suitable visualization algorithm for a specific problem. In this work we will analyze the sources of uncertainty in heuristically solving visualization problems and will propose directions to handle these uncertainties.

[1]  Eduard Gröller,et al.  Nodes on Ropes: A Comprehensive Data and Control Flow for Steering Ensemble Simulations , 2011, IEEE Transactions on Visualization and Computer Graphics.

[2]  M. Srámek,et al.  Multipath curved planar reformation of the peripheral arterial tree in CT angiography. , 2007, Radiology.

[3]  Kenneth Falconer,et al.  Fractal Geometry: Mathematical Foundations and Applications , 1990 .

[4]  J. V. van Wijk,et al.  HyperSlice: visualization of scalar functions of many variables , 1993, VIS '93.

[5]  Ivan Viola,et al.  Interactive illustrative visualization of hierarchical volume data , 2010, Graphics Interface.

[6]  Eduard Gröller,et al.  Comparative Visualization for Parameter Studies of Dataset Series , 2010, IEEE Transactions on Visualization and Computer Graphics.

[7]  Henry Fuchs,et al.  Frameless rendering: double buffering considered harmful , 1994, SIGGRAPH.

[8]  Stefan Bruckner,et al.  Result-Driven Exploration of Simulation Parameter Spaces for Visual Effects Design , 2010, IEEE Transactions on Visualization and Computer Graphics.

[9]  Peter Filzmoser,et al.  Uncertainty‐Aware Exploration of Continuous Parameter Spaces Using Multivariate Prediction , 2011, Comput. Graph. Forum.

[10]  F. Zöllner Ueber eine neue Art von Pseudoskopie und ihre Beziehungen zu den von Plateau und Oppel beschriebenen Bewegungsphänomenen , 1860 .

[11]  Christoph Heinzl,et al.  Analysis and Visualization of Industrial CT Data , 2008 .

[12]  Hans-Christian Hege,et al.  Tuner: Principled Parameter Finding for Image Segmentation Algorithms Using Visual Response Surface Exploration , 2011, IEEE Transactions on Visualization and Computer Graphics.

[13]  Eduard Gröller,et al.  Two-Level Volume Rendering , 2001, IEEE Trans. Vis. Comput. Graph..

[14]  Stefan Bruckner,et al.  Semantic Layers for Illustrative Volume Rendering , 2007, IEEE Transactions on Visualization and Computer Graphics.

[15]  Eduard Gröller,et al.  Custom Interface Elements for Improved Parameter Control in Volume Rendering , 2010 .

[16]  Stefan Bruckner,et al.  Instant Volume Visualization using Maximum Intensity Difference Accumulation , 2009, Comput. Graph. Forum.

[17]  Michael Reiter,et al.  Visual Optimality and Stability Analysis of 3DCT Scan Positions , 2010, IEEE Transactions on Visualization and Computer Graphics.

[18]  Eduard Gröller,et al.  World Lines , 2010, IEEE Transactions on Visualization and Computer Graphics.

[19]  Daniel Schneider,et al.  Scientific Visualization: Interactions, Features, Metaphors , 2011, Scientific Visualization: Interactions, Features, Metaphors.

[20]  Kwan-Liu Ma,et al.  Image graphs-a novel approach to visual data exploration , 1999, Proceedings Visualization '99 (Cat. No.99CB37067).