Incorporation of WO3 species into TiO2 nanotubes via wet impregnation and their water-splitting performance

Abstract Self-organized and highly ordered titanium dioxide (TiO 2 ) nanotubes synthesized through anodization and wet impregnation were applied to incorporate tungsten trioxide (WO 3 ) species uniformly throughout the walls of nanotubes. In this study, ammonium paratungstate (APT) was used as a precursor. The effect of APT molarity on the formation of WO 3 –TiO 2 nanotubes was investigated using field emission microscopy, energy dispersion X-ray spectroscopy, transmission electron microscopy, X-ray diffraction, photoluminescence, and X-ray photoelectron spectroscopy. The WO 3 –TiO 2 nanotubes dipped in 0.3 mM APT aqueous solution exhibited better photoelectrochemical water-splitting performance under visible illumination. A maximum photocurrent of 2.1 mA/cm 2 with a photoconversion efficiency of 5.1% was obtained, which is approximately twice higher than that of pure TiO 2 nanotubes. The findings were mainly attributed to higher charge carrier separation, which minimized the recombination losses and enhanced the transportation of photo-induced electrons in this binary hybrid photoelectrode.

[1]  Craig A. Grimes,et al.  Visible light photoelectrochemical and water-photoelectrolysis properties of titania nanotube arrays , 2006 .

[2]  V. K. Mahajan,et al.  Self-organized TiO2 nanotubular arrays for photoelectrochemical hydrogen generation: effect of crystallization and defect structures , 2008 .

[3]  G. Pacchioni,et al.  Theory of Carbon Doping of Titanium Dioxide , 2005 .

[4]  Wilson A. Smith,et al.  Superior photocatalytic performance by vertically aligned core–shell TiO2/WO3 nanorod arrays , 2009 .

[5]  Chunlei Yang,et al.  PHOTOCATALYTIC ACTIVITY OF WOX-TIO2 UNDER VISIBLE LIGHT IRRADIATION , 2001 .

[6]  Uri Banin,et al.  Colloidal hybrid nanostructures: a new type of functional materials. , 2010, Angewandte Chemie.

[7]  J. Fierro,et al.  Water splitting on semiconductor catalysts under visible-light irradiation. , 2009, ChemSusChem.

[8]  M. Fernández-García,et al.  Nanostructured Ti-W mixed-metal oxides: structural and electronic properties. , 2005, The journal of physical chemistry. B.

[9]  Kangnian Fan,et al.  Synthesis of novel core-shell structured WO3/TiO2 spheroids and its application in the catalytic oxidation of cyclopentene to glutaraldehyde by aqueous H2O2 , 2005 .

[10]  Craig A. Grimes,et al.  A review on highly ordered, vertically oriented TiO2 nanotube arrays: Fabrication, material properties, and solar energy applications , 2006 .

[11]  Shifu Chen,et al.  The preparation of coupled WO 3/TiO 2 photocatalyst by ball milling , 2005 .

[12]  K. Yong,et al.  Growth and characterization of stoichiometric tungsten oxide nanorods by thermal evaporation and subsequent annealing , 2007, Nanotechnology.

[13]  C. Lai,et al.  Photoelectrochemical Performance of Smooth TiO2 Nanotube Arrays: Effect of Anodization Temperature and Cleaning Methods , 2012 .

[14]  R. Allen,et al.  A figure of merit assessment of the routes to hydrogen , 2005 .

[15]  K. Sumathy,et al.  A review and recent developments in photocatalytic water-splitting using TiO2 for hydrogen production , 2007 .

[16]  D. Leung,et al.  Hydrogen production over titania-based photocatalysts. , 2010, ChemSusChem.

[17]  W. Choi,et al.  Enhanced Photocatalytic and Photoelectrochemical Activity in the Ternary Hybrid of CdS/TiO2/WO3 through the Cascadal Electron Transfer , 2011 .

[18]  C. Lai,et al.  Effect of radio frequency sputtering power on W–TiO_2 nanotubes to improve photoelectrochemical performance , 2012 .

[19]  J. Cui,et al.  Rapid anodic oxidation of highly ordered TiO2 nanotube arrays , 2011 .

[20]  Jian Lu,et al.  Photoelectrochemical behavior of titania nanotube array grown on nanocrystalline titanium , 2009 .

[21]  J. Pan,et al.  Preparation of Highly Ordered Cubic Mesoporous WO3/TiO2 Films and Their Photocatalytic Properties , 2006 .

[22]  M. Jobbágy,et al.  Tungsten-Doped TiO2 vs Pure TiO2 Photocatalysts: Effects on Photobleaching Kinetics and Mechanism , 2008 .

[23]  Effect of the geometry of the anodized titania nanotube array on the performance of dye-sensitized solar cells. , 2010, Journal of nanoscience and nanotechnology.

[24]  Shanqing Zhang,et al.  Preparation and photoelectrochemical characterization of WO3/TiO2 nanotube array electrode , 2011 .

[25]  Lei Jiang,et al.  3-D vertical arrays of TiO2 nanotubes on Ti meshes: Efficient photoanodes for water photoelectrolysis , 2011 .

[26]  Turner,et al.  A realizable renewable energy future , 1999, Science.

[27]  Junhong Chen,et al.  Enhancing Solar Cell Efficiencies through 1-D Nanostructures , 2008, Nanoscale Research Letters.

[28]  Chunxu Pan,et al.  Diameter-controlled growth of TiO2 nanotube arrays by anodization and its photoelectric property , 2010 .

[29]  H. Shon,et al.  Visible Light Responsive Titanium Dioxide (TiO 2 ) , 2008 .

[30]  S. Balaji,et al.  Hydrothermal synthesis of anatase nanocrystals with lattice and surface doping tungsten species , 2009 .

[31]  Vladimir M. Aroutiounian,et al.  Metal oxide photoelectrodes for hydrogen generation using solar radiation-driven water splitting , 2005 .

[32]  Z. Lockman,et al.  Extremely Fast Growth Rate of TiO2 Nanotube Arrays in Electrochemical Bath Containing H2O2 , 2011 .

[33]  O. Park,et al.  Photoelectrochemical water splitting at titanium dioxide nanotubes coated with tungsten trioxide , 2006 .

[34]  Brian A. Gregg,et al.  Organic and nano-structured composite photovoltaics: An overview , 2005 .

[35]  Craig A. Grimes,et al.  Synthesis and application of highly ordered arrays of TiO2 nanotubes , 2007 .

[36]  Kun-Hong Lee,et al.  Dependence of the Morphology of Nanostructured Titanium Oxide on Fluoride Ion Content , 2009 .

[37]  C. Lai,et al.  Dimensional control of titanium dioxide nanotube arrays with hydrogen peroxide content for high photoelectrochemical water splitting performance , 2012 .

[38]  Jianyu Gong,et al.  Liquid phase deposition of tungsten doped TiO2 films for visible light photoelectrocatalytic degradation of dodecyl-benzenesulfonate , 2011 .

[39]  V. K. Mahajan,et al.  Design of a Highly Efficient Photoelectrolytic Cell for Hydrogen Generation by Water Splitting: Application of TiO2-xCx Nanotubes as a Photoanode and Pt/TiO2 Nanotubes as a Cathode , 2007 .

[40]  Masaaki Kitano,et al.  Recent developments in titanium oxide-based photocatalysts , 2007 .

[41]  Patrik Schmuki,et al.  TiO2 nanotubes: synthesis and applications. , 2011, Angewandte Chemie.

[42]  Jun Zhang,et al.  Tailored TiO2-SrTiO3 heterostructure nanotube arrays for improved photoelectrochemical performance. , 2010, ACS nano.

[43]  Z. Dang,et al.  Synthesis and characterization of WO3/titanate nanotubes nanocomposite with enhanced photocatalytic properties , 2009 .

[44]  Jinlong Zhang,et al.  One step activation of WOx/TiO2 nanocomposites with enhanced photocatalytic activity , 2009 .

[45]  Graham de Ruiter,et al.  Inside Cover: Sequential Logic Operations with Surface‐Confined Polypyridyl Complexes Displaying Molecular Random Access Memory Features (Angew. Chem. Int. Ed. 1/2010) , 2010 .

[46]  Srimala Sreekantan,et al.  Fast-rate formation of TiO2 nanotube arrays in an organic bath and their applications in photocatalysis. , 2010, Nanotechnology.

[47]  P. Schmuki,et al.  WO3/TiO2 nanotubes with strongly enhanced photocatalytic activity. , 2010, Chemistry.

[48]  S. Yamanaka,et al.  Photoelectrochemical properties and band structure of oxide films on zirconium–transition metal alloys , 2006 .

[49]  Run-Lie Shia,et al.  Potential Environmental Impact of a Hydrogen Economy on the Stratosphere , 2003, Science.

[50]  L. Wei,et al.  Study on the formation and photocatalytic activity of titanate nanotubes synthesized via hydrothermal method , 2010 .

[51]  G. Choi,et al.  Photocatalytic Behavior of WO3-Loaded TiO2 in an Oxidation Reaction , 2000 .

[52]  C. Lai,et al.  Preparation and photoelectrochemical characterization of WO3-loaded TiO2 nanotube arrays via radio frequency sputtering , 2012 .

[53]  X. Xia,et al.  Multistage Coloring Electrochromic Device Based on TiO2 Nanotube Arrays Modified with WO3 Nanoparticles , 2011 .

[54]  P. Schmuki,et al.  Doped TiO2 and TiO2 nanotubes: synthesis and applications. , 2010, Chemphyschem : a European journal of chemical physics and physical chemistry.

[55]  C. Lai,et al.  Photoelectrochemical behaviour of uniform growth TiO2 nanotubes via bubble blowing synthesised in ethylene glycol with hydrogen peroxide. , 2012, Journal of nanoscience and nanotechnology.

[56]  Baozhu Tian,et al.  Comparative studies of operational parameters of degradation of azo dyes in visible light by highly efficient WOx/TiO2 photocatalyst. , 2010, Journal of hazardous materials.

[57]  M. Radecka,et al.  Structural, electrical and optical properties of TiO2–WO3 polycrystalline ceramics , 2004 .

[58]  Shuxin Ouyang,et al.  Nano‐photocatalytic Materials: Possibilities and Challenges , 2012, Advanced materials.

[59]  Feng Zhou,et al.  TiO2 nanotubes: Structure optimization for solar cells , 2011 .

[60]  G. Zeng,et al.  Photocatalytic reduction of Cr(VI) on WO3 doped long TiO2 nanotube arrays in the presence of citric acid , 2010 .

[61]  J. Macák,et al.  Enhanced visible light photocurrent generation at surface-modified TiO2 nanotubes , 2009 .

[62]  C. Lai,et al.  Effect of applied potential on the formation of self-organized TiO 2 nanotube arrays and its photoelectrochemical response , 2011 .

[63]  W. Jenks,et al.  Photocatalytic degradation using tungsten-modified TiO2 and visible light: Kinetic and mechanistic effects using multiple catalyst doping strategies , 2009 .

[64]  P. Kamat,et al.  Solar Cells by Design: Photoelectrochemistry of TiO2 Nanorod Arrays Decorated with CdSe , 2010 .

[65]  Jinlong Zhang,et al.  WO3/TiO2 composite with morphology change via hydrothermal template-free route as an efficient visible light photocatalyst , 2011 .

[66]  Andrei Ghicov,et al.  TiO2-WO3 composite nanotubes by alloy anodization: growth and enhanced electrochromic properties. , 2008, Journal of the American Chemical Society.

[67]  Akira Fujishima,et al.  Recent topics in photoelectrochemistry: achievements and future prospects , 2000 .

[68]  J. Ohi Hydrogen energy cycle: An overview , 2005 .

[69]  A. Mohamed,et al.  Influence of electrolyte pH on TiO2 nanotube formation by Ti anodization , 2009 .

[70]  A. Matsuda,et al.  Carbon-incorporated TiO2 photoelectrodes prepared via rapid-anodic oxidation for efficient visible-light hydrogen generation , 2012 .

[71]  J. Bockris,et al.  The origin of ideas on a Hydrogen Economy and its solution to the decay of the environment , 2002 .