A high-sensitivity MEMS gravimeter with a large dynamic range

Precise measurement of variations in the local gravitational acceleration is valuable for natural hazard forecasting, prospecting, and geophysical studies. Common issues of the present gravimetry technologies include their high cost, high mass, and large volume, which can potentially be solved by micro-electromechanical-system (MEMS) technology. However, the reported MEMS gravimeter does not have a high sensitivity and a large dynamic range comparable with those of the present commercial gravimeters, lowering its practicability and ruling out worldwide deployment. In this paper, we introduce a more practical MEMS gravimeter that has a higher sensitivity of 8 μGal/√Hz and a larger dynamic range of 8000 mGal by using an advanced suspension design and a customized optical displacement transducer. The proposed MEMS gravimeter has performed the co-site earth tides measurement with a commercial superconducting gravimeter GWR iGrav with the results showing a correlation coefficient of 0.91.

[1]  S. B. Calcutt,et al.  A broad-band silicon microseismometer with 0.25 NG/rtHz performance , 2018, 2018 IEEE Micro Electro Mechanical Systems (MEMS).

[2]  J. Chéry,et al.  Assessing the precision of the iGrav superconducting gravimeter for hydrological models and karstic hydrological process identification , 2017 .

[3]  P. Franz,et al.  Gravity measurements as a calibration tool for geothermal reservoir modelling , 2017 .

[4]  O. Francis,et al.  Geophysics From Terrestrial Time‐Variable Gravity Measurements , 2017 .

[5]  Fangjing Hu,et al.  A precise spacing-control method in MEMS packaging for capacitive accelerometer applications , 2018, Journal of Micromechanics and Microengineering.

[6]  Fengtian Han,et al.  Temperature-Insensitive Structure Design of Micromachined Resonant Accelerometers , 2019, Sensors.

[7]  Thomas P. Swiler,et al.  In-plane MEMS-based nano-g accelerometer with sub-wavelength optical resonant sensor , 2008 .

[8]  T. Niebauer Gravimetric Methods – Absolute and Relative Gravity Meter: Instruments Concepts and Implementation , 2015 .

[9]  J. Lang,et al.  A curved-beam bistable mechanism , 2004, Journal of Microelectromechanical Systems.

[10]  M. Nabighian,et al.  Historical development of the gravity method in exploration , 2005 .

[11]  L. Gary Holcomb,et al.  A Direct Method for Calculating Instrument Noise Levels in Side-by-Side Seismometer Evaluations , 1989 .

[12]  Denis Mougenot,et al.  A high-sensitivity MEMS-based accelerometer , 2014 .

[13]  G. D. Hammond,et al.  Measurement of the Earth tides with a MEMS gravimeter , 2016, Nature.

[14]  D. W. Allan,et al.  Statistics of atomic frequency standards , 1966 .

[15]  Derek K. Shaeffer,et al.  MEMS inertial sensors: A tutorial overview , 2013, IEEE Communications Magazine.

[16]  Milind Pandit,et al.  A Resonant MEMS Accelerometer With 56ng Bias Stability and 98ng/Hz1/2 Noise Floor , 2019, Journal of Microelectromechanical Systems.

[17]  Huafeng Liu,et al.  A Silicon Seismic Package (SSP) for Planetary Geophysics , 2016 .

[18]  W. Farrell A Discussion on the measurement and interpretation of changes of strain in the Earth - Earth tides, ocean tides and tidal loading , 1973, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[19]  W. Pike,et al.  Analysis of sidewall quality in through-wafer deep reactive-ion etching , 2004 .

[20]  Huafeng Liu,et al.  A nano-g micromachined seismic sensor for levelling-free measurements , 2018, Sensors and Actuators A: Physical.

[21]  Zhuangde Jiang,et al.  A MEMS resonant accelerometer for low-frequency vibration detection , 2018, Sensors and Actuators A: Physical.

[22]  Douglas J. Paul,et al.  Field Tests of a Portable MEMS Gravimeter , 2017, Sensors.

[23]  J. Peterson,et al.  Observations and modeling of seismic background noise , 1993 .

[24]  Charles R. Hutt,et al.  A brief test of the Hewlett-Packard MEMS seismic accelerometer , 2014 .

[25]  Petra Döll,et al.  GRACE observations of changes in continental water storage , 2006 .

[26]  J. Gottsmann,et al.  4D volcano gravimetry , 2008 .

[27]  Junbo Wang,et al.  Microelectromechanical Systems-Based Electrochemical Seismic Sensors With Insulating Spacers Integrated Electrodes for Planetary Exploration , 2016, IEEE Sensors Journal.

[28]  Jun Luo,et al.  Test of the Universality of Free Fall with Atoms in Different Spin Orientations. , 2015, Physical review letters.

[29]  Yan Su,et al.  A 0.23- $\mu \text{g}$ Bias Instability and 1- $\mu \text{g}/\surd $ Hz Acceleration Noise Density Silicon Oscillating Accelerometer With Embedded Frequency-to-Digital Converter in PLL , 2017, IEEE Journal of Solid-State Circuits.

[30]  N. Zahzam,et al.  Absolute marine gravimetry with matter-wave interferometry , 2018, Nature Communications.

[31]  Roland Pail,et al.  New ultrahigh‐resolution picture of Earth's gravity field , 2013 .

[32]  Philippe Bouyer,et al.  Gravity measurements below 10−9g with a transportable absolute quantum gravimeter , 2018, Scientific Reports.

[33]  Thomas W. Kenny,et al.  Epitaxially encapsulated resonant accelerometer with an on-chip micro-oven , 2017, 2017 19th International Conference on Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS).

[34]  Walter H. F. Smith,et al.  New global marine gravity model from CryoSat-2 and Jason-1 reveals buried tectonic structure , 2014, Science.

[35]  Shimon Wdowinski,et al.  Application of InSAR and Gravimetry for Land Subsidence Hazard Zoning in Aguascalientes, Mexico , 2015, Remote. Sens..

[36]  Zhongkun Hu,et al.  Demonstration of an ultrahigh-sensitivity atom-interferometry absolute gravimeter , 2013 .