Model‐size reduction for the non‐linear dynamic analysis of quasi‐symmetric structures

A computational procedure is presented for the efficient non‐linear dynamic analysis of quasi‐symmetric structures. The procedure is based on approximating the unsymmetric response vectors, at each time step, by a linear combination of symmetric and antisymmetric vectors, each obtained using approximately half the degrees of freedom of the original model. A mixed formulation is used with the fundamental unknowns consisting of the internal forces (stress resultants), generalized displacements and velocity components. The spatial discretization is done by using the finite element method, and the governing semi‐discrete finite element equations are cast in the form of first‐order non‐linear ordinary differential equations. The temporal integration is performed by using implicit multistep integration operators. The resulting non‐linear algebraic equations, at each time step, are solved by using iterative techniques. The three key elements of the proposed procedure are: (a) use of mixed finite element models with independent shape functions for the stress resultants, generalized displacements, and velocity components and with the stress resultants allowed to be discontinuous at interelement boundaries; (b) operator splitting, or restructuring of the governing discrete equations of the structure to delineate the contributions to the symmetric and antisymmetric vectors constituting the response; and (c) use of a two‐level iterative process (with nested iteration loops) to generate the symmetric and antisymmetric components of the response vectors at each time step. The top‐ and bottom‐level iterations (outer and inner iterative loops) are performed by using the Newton—Raphson and the preconditioned conjugate gradient (PCG) techniques, respectively. The effectiveness of the proposed strategy is demonstrated by means of a numerical example and the potential of the strategy for solving more complex non‐linear problems is discussed.