Examination of a high resolution laser optical plankton counter and FlowCAM for measuring plankton concentration and size

[1]  Yvon E. Roussel,et al.  Comparison of Techniques Used to Restrain and Mark Moose , 1974 .

[2]  James T. Carlton,et al.  Transoceanic and interoceanic dispersal of coastal marine organisms: the biology of ballast water , 1985 .

[3]  J. Geller,et al.  Ecological Roulette: The Global Transport of Nonindigenous Marine Organisms , 1993, Science.

[4]  Charles S. Yentsch,et al.  An imaging-in-flow system for automated analysis of marine microplankton , 1998 .

[5]  A. King,et al.  Using an optical plankton counter to determine the size distributions of preserved zooplankton samples , 1999 .

[6]  Marjorie J. Wonham,et al.  Invasion of Coastal Marine Communities in North America: Apparent Patterns, Processes, and Biases , 2000 .

[7]  B. Beanlands,et al.  The next generation of Optical Plankton Counter: the Laser-OPC , 2004 .

[8]  Norman L. Guinasso,et al.  COMBINING NEW TECHNOLOGIES FOR DETERMINATION OF PHYTOPLANKTON COMMUNITY STRUCTURE IN THE NORTHERN GULF OF MEXICO 1 , 2005 .

[9]  B. Beisner,et al.  Regional ecosystem variability drives the relative importance of bottom-up and top-down factors for zooplankton size spectra , 2007 .

[10]  B. Beisner,et al.  The use of the Laser Optical Plankton Counter to measure zooplankton size, abundance, and biomass in small freshwater lakes , 2007 .

[11]  H. Saito,et al.  A rapid analysis of copepod feeding using FlowCAM , 2007 .

[12]  Xabier Irigoien,et al.  Changes in plankton size structure and composition, during the generation of a phytoplankton bloom, in the central Cantabrian sea. , 2008 .

[13]  X. Irigoien,et al.  Effects of Lugol's fixation on the size structure of natural nano-microplankton samples, analyzed by means of an automatic counting method , 2008 .

[14]  George A. Jackson,et al.  Assessing plankton and other particles in situ with the SOLOPC , 2008 .

[15]  S. Schultes,et al.  Laser Optical Plankton Counter and Zooscan intercomparison in tropical and subtropical marine ecosystems , 2009 .

[16]  K. Tande,et al.  Measuring copepod abundance in deep-water winter habitats in the NE Norwegian Sea: intercomparison of results from laser optical plankton counter and multinet , 2010 .

[17]  Allegra Cangelosi,et al.  Assessing Ballast Water Treatments: Evaluation of Viability Methods for Ambient Freshwater Microplankton Assemblages , 2010 .

[18]  B. Elliott Development of guidance on how to analyze a ballast water sample , 2010 .

[19]  O. Pedersen,et al.  Vertical distribution of overwintering Calanus finmarchicus in the NE Norwegian Sea in relation to hydrography , 2011 .

[20]  Matthew R. First,et al.  Comparison of techniques used to count single-celled viable phytoplankton , 2011, Journal of Applied Phycology.

[21]  Eva Álvarez,et al.  How to effectively sample the plankton size spectrum? A case study using FlowCAM , 2011 .

[22]  Marinko Učur,et al.  International convention for the control and management of ships’ ballast water and sediments (imo, 2004) , 2011 .

[23]  Hans Henrik Jakobsen,et al.  FlowCAM: Sizing cells and understanding the impact of size distributions on biovolume of planktonic community structure , 2011 .

[24]  Eva Álvarez,et al.  Improvement of plankton biovolume estimates derived from image-based automatic sampling devices: application to FlowCAM , 2012 .

[25]  Matthew R. First,et al.  Performance of the human “counting machine”: evaluation of manual microscopy for enumerating plankton , 2012 .

[26]  Diane M. McKnight,et al.  Automated measurement of diatom size , 2012 .

[27]  L. Zarauz,et al.  Testing the usefulness of a simple automatic method for particles abundance and size determination to derive cost-effective biological indicators in large monitoring networks , 2012, Hydrobiologia.

[28]  E. Zetsche,et al.  Dead or alive? Viability assessment of micro- and mesoplankton , 2012 .

[29]  K. Tande,et al.  Capturing quantitative zooplankton information in the sea: Performance test of laser optical plankton counter and video plankton recorder in a Calanus finmarchicus dominated summer situation , 2013 .

[30]  S. Rolinski,et al.  Phytoplankton appearance in particle size spectra - deriving conversion functions between microscopic and particle counter measurements. , 2013, Water research.

[31]  S. Schultes,et al.  Influence of physical forcing on mesozooplankton communities at the Ushant tidal front , 2013 .

[32]  S. Schultes,et al.  Plankton and seston size spectra estimated by the LOPC and ZooScan in the Abrolhos Bank ecosystem (SE Atlantic) , 2013 .

[33]  P. Legendre,et al.  Examining shifts in zooplankton community variability following biological invasion , 2013 .

[34]  Ari Voutilainen,et al.  Intercalibration of an acoustic technique, two optical ones, and a simple seston dry mass method for freshwater zooplankton sampling , 2014 .

[35]  A. Lopez-Urrutia,et al.  Routine determination of plankton community composition and size structure: a comparison between FlowCAM and light microscopy , 2014 .

[36]  M. Pagano,et al.  FlowCAM as a tool for studying small (80–1000 µm) metazooplankton communities , 2015 .

[37]  S. Bailey An overview of thirty years of research on ballast water as a vector for aquatic invasive species to freshwater and marine environments , 2015 .