Combining classifiers: Soft computing solutions.

Classier combination is now an established pattern recognition subdiscipline. Despite the strong aspiration for theoretical studies, classier combination relies mainly on heuristic and empirical solutions. Assuming that \soft computing" encompasses neural networks, evolutionary computation, and fuzzy sets, we explain how each of the three components has been used in classier combination.

[1]  B.V. Dasarathy,et al.  A composite classifier system design: Concepts and methodology , 1979, Proceedings of the IEEE.

[2]  Geoffrey E. Hinton,et al.  Evaluation of Adaptive Mixtures of Competing Experts , 1990, NIPS.

[3]  Richard Lippmann,et al.  Using Genetic Algorithms to Improve Pattern Classification Performance , 1990, NIPS.

[4]  Geoffrey E. Hinton,et al.  Adaptive Mixtures of Local Experts , 1991, Neural Computation.

[5]  Jon Atli Benediktsson,et al.  Consensus theoretic classification methods , 1992, IEEE Trans. Syst. Man Cybern..

[6]  M. Sugeno,et al.  Multi-attribute classification using fuzzy integral , 1992, [1992 Proceedings] IEEE International Conference on Fuzzy Systems.

[7]  Keung-Chi Ng,et al.  Consensus diagnosis: a simulation study , 1992, IEEE Trans. Syst. Man Cybern..

[8]  David H. Wolpert,et al.  Stacked generalization , 1992, Neural Networks.

[9]  K D Wernecke,et al.  A coupling procedure for the discrimination of mixed data. , 1992, Biometrics.

[10]  Adam Krzyżak,et al.  Methods of combining multiple classifiers and their applications to handwriting recognition , 1992, IEEE Trans. Syst. Man Cybern..

[11]  Jack Sklansky,et al.  A note on genetic algorithms for large-scale feature selection , 1989, Pattern Recognition Letters.

[12]  Ludmila I. Kuncheva,et al.  Genetic Algorithm for Feature Selection for Parallel Classifiers , 1993, Inf. Process. Lett..

[13]  Heekuck Oh,et al.  Neural Networks for Pattern Recognition , 1993, Adv. Comput..

[14]  Ludmila I. Kuncheva,et al.  'Change-glasses' approach in pattern recognition , 1993, Pattern Recognit. Lett..

[15]  Ching Y. Suen,et al.  A method of combining multiple classifiers-a neural network approach , 1994, Proceedings of the 12th IAPR International Conference on Pattern Recognition, Vol. 3 - Conference C: Signal Processing (Cat. No.94CH3440-5).

[16]  P. Gader,et al.  Advances in fuzzy integration for pattern recognition , 1994, CVPR 1994.

[17]  Eros Gian Alessandro Pasero,et al.  Multi-layer perceptron ensembles for increased performance and fault-tolerance in pattern recognition tasks , 1994, Proceedings of 1994 IEEE International Conference on Neural Networks (ICNN'94).

[18]  Harris Drucker,et al.  Boosting and Other Ensemble Methods , 1994, Neural Computation.

[19]  Hsin-Chia Fu,et al.  A divide-and-conquer methodology for modular supervised neural network design , 1994, Proceedings of 1994 IEEE International Conference on Neural Networks (ICNN'94).

[20]  Volker Tresp,et al.  Combining Estimators Using Non-Constant Weighting Functions , 1994, NIPS.

[21]  Roberto Battiti,et al.  Democracy in neural nets: Voting schemes for classification , 1994, Neural Networks.

[22]  Anders Krogh,et al.  Neural Network Ensembles, Cross Validation, and Active Learning , 1994, NIPS.

[23]  Galina L. Rogova,et al.  Combining the results of several neural network classifiers , 1994, Neural Networks.

[24]  Bruce W. Schmeiser,et al.  Optimal linear combinations of neural networks: an overview , 1994, Proceedings of 1994 IEEE International Conference on Neural Networks (ICNN'94).

[25]  Ching Y. Suen,et al.  Optimal combinations of pattern classifiers , 1995, Pattern Recognit. Lett..

[26]  Michel Grabisch,et al.  On equivalence classes of fuzzy connectives-the case of fuzzy integrals , 1995, IEEE Trans. Fuzzy Syst..

[27]  Ludmila I. Kuncheva,et al.  Editing for the k-nearest neighbors rule by a genetic algorithm , 1995, Pattern Recognit. Lett..

[28]  Ching Y. Suen,et al.  A Method of Combining Multiple Experts for the Recognition of Unconstrained Handwritten Numerals , 1995, IEEE Trans. Pattern Anal. Mach. Intell..

[29]  Sung-Bae Cho,et al.  Combining multiple neural networks by fuzzy integral for robust classification , 1995, IEEE Trans. Syst. Man Cybern..

[30]  Sung-Bae Cho,et al.  Multiple network fusion using fuzzy logic , 1995, IEEE Trans. Neural Networks.

[31]  Robert A. Jacobs,et al.  Methods For Combining Experts' Probability Assessments , 1995, Neural Computation.

[32]  Michael I. Jordan,et al.  Convergence results for the EM approach to mixtures of experts architectures , 1995, Neural Networks.

[33]  H. Ishibuchi,et al.  Voting schemes for fuzzy-rule-based classification systems , 1996, Proceedings of IEEE 5th International Fuzzy Systems.

[34]  The pandemonium system of reflective agents , 1996, IEEE Trans. Neural Networks.

[35]  Michael I. Jordan,et al.  Local linear perceptrons for classification , 1996, IEEE Trans. Neural Networks.

[36]  Kevin W. Bowyer,et al.  Combination of multiple classifiers using local accuracy estimates , 1996, Proceedings CVPR IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[37]  Isabelle Bloch Information combination operators for data fusion: a comparative review with classification , 1996, IEEE Trans. Syst. Man Cybern. Part A.

[38]  Paul D. Gader,et al.  Fusion of handwritten word classifiers , 1996, Pattern Recognit. Lett..

[39]  Kagan Tumer,et al.  Error Correlation and Error Reduction in Ensemble Classifiers , 1996, Connect. Sci..

[40]  L. Kuncheva An application of OWA operators to the aggregation of multiple classification decisions , 1997 .

[41]  Josef Kittler,et al.  Strategies for combining classifiers employing shared and distinct pattern representations , 1997, Pattern Recognit. Lett..

[42]  Ke Chen,et al.  Methods of Combining Multiple Classifiers with Different Features and Their Applications to Text-Independent Speaker Identification , 1997, Int. J. Pattern Recognit. Artif. Intell..

[43]  Sherif Hashem,et al.  Optimal Linear Combinations of Neural Networks , 1997, Neural Networks.

[44]  J. R. Sveinsson,et al.  Multistage classifiers optimized by neural networks and genetic algorithms , 1997 .

[45]  Ching Y. Suen,et al.  Application of majority voting to pattern recognition: an analysis of its behavior and performance , 1997, IEEE Trans. Syst. Man Cybern. Part A.

[46]  Yi Lu,et al.  Fuzzy integration of classification results , 1997, Pattern Recognit..

[47]  Ludmila I. Kuncheva,et al.  Fitness functions in editing k-NN reference set by genetic algorithms , 1997, Pattern Recognit..

[48]  D Wang,et al.  Use of fuzzy-logic-inspired features to improve bacterial recognition through classifier fusion , 1998, IEEE Trans. Syst. Man Cybern. Part B.

[49]  Jiri Matas,et al.  On Combining Classifiers , 1998, IEEE Trans. Pattern Anal. Mach. Intell..

[50]  Christoph M. Friedrich,et al.  Ensembles of Evolutionary created Artificial Neural Networks , 1998 .

[51]  David W. Opitz,et al.  A Genetic Algorithm Approach for Creating Neural-Network Ensembles , 1999 .

[52]  John S. D. Mason,et al.  Adaptive classifier integration for robust pattern recognition , 1999, IEEE Trans. Syst. Man Cybern. Part B.

[53]  Amanda J. C. Sharkey,et al.  Combining Artificial Neural Nets: Ensemble and Modular Multi-Net Systems , 1999 .

[54]  D. Obradovic,et al.  Combining Artificial Neural Nets , 1999, Perspectives in Neural Computing.

[55]  Antanas Verikas,et al.  Soft combination of neural classifiers: A comparative study , 1999, Pattern Recognit. Lett..

[56]  James M. Keller,et al.  Fuzzy Models and Algorithms for Pattern Recognition and Image Processing , 1999 .

[57]  Christoph M. Friedrich Ensembles of Evolutionary created Artificial Neural Networks and Nearest Neighbour Classifiers , 1999 .

[58]  Amanda J. C. Sharkey,et al.  Boosting Using Neural Networks , 1999 .

[59]  Amanda J. C. Sharkey,et al.  Treating Harmful Collinearity in Neural Network Ensembles , 1999 .

[60]  Sung-Bae Cho,et al.  Pattern recognition with neural networks combined by genetic algorithm , 1999, Fuzzy Sets Syst..

[61]  Hisao Ishibuchi,et al.  Voting in fuzzy rule-based systems for pattern classification problems , 1999, Fuzzy Sets Syst..

[62]  Lakhmi C. Jain,et al.  Designing classifier fusion systems by genetic algorithms , 2000, IEEE Trans. Evol. Comput..

[63]  Thomas G. Dietterich Ensemble Methods in Machine Learning , 2000, Multiple Classifier Systems.

[64]  Ludmila I. Kuncheva,et al.  Fuzzy Classifier Design , 2000, Studies in Fuzziness and Soft Computing.

[65]  Ludmila I. Kuncheva,et al.  Clustering-and-selection model for classifier combination , 2000, KES'2000. Fourth International Conference on Knowledge-Based Intelligent Engineering Systems and Allied Technologies. Proceedings (Cat. No.00TH8516).

[66]  James C. Bezdek,et al.  Decision templates for multiple classifier fusion: an experimental comparison , 2001, Pattern Recognit..

[67]  Fabio Roli,et al.  Design of effective neural network ensembles for image classification purposes , 2001, Image Vis. Comput..