The human mitochondrial genome contains a second light strand promoter.

[1]  O. Rackham,et al.  Organization and expression of the mammalian mitochondrial genome , 2022, Nature Reviews Genetics.

[2]  M. Minczuk,et al.  The potential of mitochondrial genome engineering , 2021, Nature Reviews Genetics.

[3]  L. Ettwiller,et al.  Comprehensive determination of transcription start sites derived from all RNA polymerases using ReCappable-seq , 2021, Genome research.

[4]  L. Van Haute,et al.  The FASTK family proteins fine-tune mitochondrial RNA processing , 2021, PLoS genetics.

[5]  R. Szczesny,et al.  Human Mitochondrial RNA Processing and Modifications: Overview , 2021, International journal of molecular sciences.

[6]  Keith W. Muir,et al.  Whole-genome sequencing of patients with rare diseases in a national health system , 2020, Nature.

[7]  David R. Liu,et al.  A bacterial cytidine deaminase toxin enables CRISPR-free mitochondrial base editing , 2020, Nature.

[8]  Laura C. Greaves,et al.  The rise and rise of mitochondrial DNA mutations , 2020, Open Biology.

[9]  David L. Bennett,et al.  Germline selection shapes human mitochondrial DNA diversity , 2019, Science.

[10]  Stefan J. Siira,et al.  TEFM regulates both transcription elongation and RNA processing in mitochondria , 2019, EMBO reports.

[11]  M. Falkenberg Mitochondrial DNA replication in mammalian cells: overview of the pathway , 2018, Essays in biochemistry.

[12]  Robert W. Taylor,et al.  Topoisomerase 3α Is Required for Decatenation and Segregation of Human mtDNA. , 2018, Molecular cell.

[13]  P. Chinnery,et al.  Background sequence characteristics influence the occurrence and severity of disease-causing mtDNA mutations , 2017, PLoS genetics.

[14]  P. Cramer,et al.  Structural Basis of Mitochondrial Transcription Initiation , 2017, Cell.

[15]  Alexander E. Kel,et al.  cutPrimers: A New Tool for Accurate Cutting of Primers from Reads of Targeted Next Generation Sequencing , 2017, J. Comput. Biol..

[16]  James T. Robinson,et al.  Variant Review with the Integrative Genomics Viewer. , 2017, Cancer research.

[17]  C. Gustafsson,et al.  Human Mitochondrial Transcription Factor B2 Is Required for Promoter Melting during Initiation of Transcription* , 2016, The Journal of Biological Chemistry.

[18]  Pedro Rebelo-Guiomar,et al.  Near-complete elimination of mutant mtDNA by iterative or dynamic dose-controlled treatment with mtZFNs , 2016, Nucleic acids research.

[19]  Michelle D. Wang,et al.  DNA supercoiling during transcription , 2016, Biophysical Reviews.

[20]  C. Gustafsson,et al.  Maintenance and Expression of Mammalian Mitochondrial DNA. , 2016, Annual review of biochemistry.

[21]  D. Temiakov,et al.  Human Mitochondrial Transcription Initiation Complexes Have Similar Topology on the Light and Heavy Strand Promoters* , 2016, The Journal of Biological Chemistry.

[22]  Fidel Ramírez,et al.  deepTools2: a next generation web server for deep-sequencing data analysis , 2016, Nucleic Acids Res..

[23]  L. Ettwiller,et al.  A novel enrichment strategy reveals unprecedented number of novel transcription start sites at single base resolution in a model prokaryote and the gut microbiome , 2015, bioRxiv.

[24]  S. Jakobs,et al.  Cross-strand binding of TFAM to a single mtDNA molecule forms the mitochondrial nucleoid , 2015, Proceedings of the National Academy of Sciences.

[25]  T. Samuelsson,et al.  Regulation of DNA replication at the end of the mitochondrial D-loop involves the helicase TWINKLE and a conserved sequence element , 2015, Nucleic acids research.

[26]  C. Gustafsson,et al.  TEFM is a potent stimulator of mitochondrial transcription elongation in vitro , 2015, Nucleic acids research.

[27]  D. Temiakov,et al.  Replication-transcription switch in human mitochondria , 2015, Science.

[28]  E. Aurell,et al.  Whole-genome mapping of 5′ RNA ends in bacteria by tagged sequencing: a comprehensive view in Enterococcus faecalis , 2014, RNA.

[29]  W. Roos,et al.  In vitro-reconstituted nucleoids can block mitochondrial DNA replication and transcription. , 2014, Cell reports.

[30]  P. Cramer,et al.  A novel intermediate in transcription initiation by human mitochondrial RNA polymerase , 2014, Nucleic acids research.

[31]  Cole Trapnell,et al.  TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions , 2013, Genome Biology.

[32]  C. Gustafsson,et al.  Mammalian transcription factor A is a core component of the mitochondrial transcription machinery , 2012, Proceedings of the National Academy of Sciences.

[33]  C. Gustafsson,et al.  A hybrid G-quadruplex structure formed between RNA and DNA explains the extraordinary stability of the mitochondrial R-loop , 2012, Nucleic acids research.

[34]  J. Arnold,et al.  Transcription from the second heavy-strand promoter of human mtDNA is repressed by transcription factor A in vitro , 2012, Proceedings of the National Academy of Sciences.

[35]  V. Tiranti,et al.  Transcriptional requirements of the distal heavy-strand promoter of mtDNA , 2012, Proceedings of the National Academy of Sciences.

[36]  Steven L Salzberg,et al.  Fast gapped-read alignment with Bowtie 2 , 2012, Nature Methods.

[37]  J. Mattick,et al.  RNA processing in human mitochondria , 2011, Cell cycle.

[38]  Martijn A. Huynen,et al.  TEFM (c17orf42) is necessary for transcription of human mtDNA , 2011, Nucleic acids research.

[39]  C. Gustafsson,et al.  G-quadruplex structures in RNA stimulate mitochondrial transcription termination and primer formation , 2010, Proceedings of the National Academy of Sciences.

[40]  C. Gustafsson,et al.  Human Mitochondrial Transcription Revisited , 2010, The Journal of Biological Chemistry.

[41]  Aaron R. Quinlan,et al.  Bioinformatics Applications Note Genome Analysis Bedtools: a Flexible Suite of Utilities for Comparing Genomic Features , 2022 .

[42]  D. Temiakov,et al.  TFB2 Is a Transient Component of the Catalytic Site of the Human Mitochondrial RNA Polymerase , 2009, Cell.

[43]  Gonçalo R. Abecasis,et al.  The Sequence Alignment/Map format and SAMtools , 2009, Bioinform..

[44]  K. Bennett,et al.  RNase P without RNA: Identification and Functional Reconstitution of the Human Mitochondrial tRNA Processing Enzyme , 2008, Cell.

[45]  Philip L. F. Johnson,et al.  A Complete Neandertal Mitochondrial Genome Sequence Determined by High-Throughput Sequencing , 2008, Cell.

[46]  H. Erdjument-Bromage,et al.  MTERF3 Is a Negative Regulator of Mammalian mtDNA Transcription , 2007, Cell.

[47]  C. Gustafsson,et al.  Conserved Sequence Box II Directs Transcription Termination and Primer Formation in Mitochondria* , 2006, Journal of Biological Chemistry.

[48]  C. Gustafsson,et al.  The mitochondrial RNA polymerase contributes critically to promoter specificity in mammalian cells , 2004, The EMBO journal.

[49]  Ú. Árnason,et al.  A complete mitochondrial DNA molecule of the white-handed gibbon, Hylobates lar, and comparison among individual mitochondrial genes of all hominoid genera , 2004 .

[50]  James C. Wang,et al.  Dual localization of human DNA topoisomerase IIIα to mitochondria and nucleus , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[51]  C. Gustafsson,et al.  Mitochondrial transcription factors B1 and B2 activate transcription of human mtDNA , 2002, Nature Genetics.

[52]  Y. Pommier,et al.  Human mitochondrial topoisomerase I , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[53]  D. Turnbull,et al.  Reanalysis and revision of the Cambridge reference sequence for human mitochondrial DNA , 1999, Nature Genetics.

[54]  T. Strick,et al.  Behavior of supercoiled DNA. , 1998, Biophysical journal.

[55]  Ú. Árnason,et al.  The mitochondrial DNA molecule of sumatran orangutan and a molecular proposal for two (Bornean and Sumatran) species of orangutan , 1996, Journal of Molecular Evolution.

[56]  N. Takahata,et al.  Recent African origin of modern humans revealed by complete sequences of hominoid mitochondrial DNAs. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[57]  M. King,et al.  Post-transcriptional regulation of the steady-state levels of mitochondrial tRNAs in HeLa cells. , 1993, The Journal of biological chemistry.

[58]  H. Drew,et al.  Negative supercoiling induces spontaneous unwinding of a bacterial promoter. , 1985, The EMBO journal.

[59]  D. Chang,et al.  Precise identification of individual promoters for transcription of each strand of human mitochondrial DNA , 1984, Cell.

[60]  M. Rabinowitz,et al.  Identification of initiation sites for heavy-strand and light-strand transcription in human mitochondrial DNA. , 1982, Proceedings of the National Academy of Sciences of the United States of America.

[61]  Julio Montoya,et al.  tRNA punctuation model of RNA processing in human mitochondria , 1981, Nature.

[62]  G. Attardi,et al.  Symmetrical in vivo transcription of mitochondrial DNA in HeLa cells. , 1971, Proceedings of the National Academy of Sciences of the United States of America.

[63]  OUP accepted manuscript , 2021, Nucleic Acids Research.

[64]  S. Dimauro,et al.  Mitochondrial diseases , 2016, Nature Reviews Disease Primers.

[65]  D. Chang,et al.  Priming of human mitochondrial DNA replication occurs at the light-strand promoter. , 1985, Proceedings of the National Academy of Sciences of the United States of America.