Measuring M Dwarf Winds with DAZ White Dwarfs

Hydrogen atmosphere white dwarfs with metal lines, so-called DAZs, show evidence for ongoing accretion of material onto their surfaces. Some DAZs are known to have unresolved M dwarf companions, which could account for the observed accretion through a stellar wind. I combine observed Ca abundances of the DAZs with information on the orbital separation of their M dwarf companions to infer the mass-loss rate of the M dwarfs. I find that for three of the six known DAZs with M dwarf companions, a stellar wind can plausibly explain the observed accretion on the white dwarfs assuming Bondi-Hoyle accretion of solar abundance stellar winds on the order of 10-14 to 10-16 M☉ yr-1. The rest of the sample have companions with orbits 1 AU and require companion mass-loss rates of >10-11 M☉ yr-1. I conclude that there must be an alternative explanation for accretion of material onto DAZs with widely separated companions. The inferred winds for two of the close binaries are orders of magnitude smaller than typically assumed for the angular momentum loss of red dwarf-white dwarf pairs due to magnetic braking from a stellar wind and may seriously affect predictions for the formation rate of CVs with low-mass companions.

[1]  R. Redman,et al.  Limits on detectability of mass loss from cool dwarfs , 1992 .

[2]  S. Sigurdsson,et al.  Cool Customers in the Stellar Graveyard. II. Limits to Substellar Objects around Nearby DAZ White Dwarfs , 2004, astro-ph/0412669.

[3]  B. Zuckerman,et al.  Excess infrared radiation from a white dwarf—an orbiting brown dwarf? , 1987, Nature.

[4]  M. Pinsonneault,et al.  The Angular Momentum Evolution of Very Low Mass Stars , 2000, astro-ph/0001065.

[5]  R. Probst,et al.  The luminosity function of very low mass stars. , 1982 .

[6]  A. Bruch The Precataclysmic Binary RR Caeli Revisited: Spectroscopy and Light-Curve Synthesis , 1999 .

[7]  J. FarihiM. Christopher A Possible Brown Dwarf Companion to the White Dwarf GD 1400 , 2004 .

[8]  H. Ritter,et al.  Catalogue of Cataclysmic Binaries, Low-Mass X-Ray Binaries and Related Objects , 1984, astro-ph/0301444.

[9]  Cool Customers in the Stellar Graveyard. III. Limits to Substellar Objects around nearby White Dwarfs using the Canada-France-Hawaii Telescope* , 2005, astro-ph/0509854.

[10]  I. Reid,et al.  Metals in Cool DA White Dwarfs , 1998 .

[11]  Edward M. Sion,et al.  A Catalog of Spectroscopically Identified White Dwarfs , 1987 .

[12]  Gilles Fontaine,et al.  A study of metal abundance patterns in cool white dwarfs. II - Simulations of accretion episodes , 1993 .

[13]  R. Wade,et al.  PG 0308+096 and PG 1026+002: two new short period binary stars resulting from common-envelope evolution , 1993 .

[14]  A. Jorissen,et al.  Wind accretion in binary stars – I. Intricacies of the flow structure , 1993 .

[15]  Jeremy Lim,et al.  Limits to Mass Outflows from Late-Type Dwarf Stars , 1996 .

[16]  P. Bergeron,et al.  The Formation Rate and Mass and Luminosity Functions of DA White Dwarfs from the Palomar Green Survey , 2004, astro-ph/0406657.

[17]  L. Davis,et al.  The angular momentum of the solar wind. , 1967 .

[18]  D. Koester,et al.  The accretion-diffusion scenario for metals in cool white dwarfs , 2006 .

[19]  J. Cassinelli,et al.  Introduction to Stellar Winds , 1999 .

[20]  Limits on the accretion rates onto massive black holes in nearby galaxies , 2000, astro-ph/0005516.

[21]  G. Rybicki,et al.  Bondi Accretion and the Problem of the Missing Isolated Neutron Stars , 2003, astro-ph/0305421.

[22]  B. Gaensicke,et al.  The age, life expectancy, and space density of Post Common Envelope Binaries , 2003, astro-ph/0305531.

[23]  J. Farihi,et al.  White Dwarf-Red Dwarf Systems Resolved with the Hubble Space Telescope. I. First Results , 2006 .

[24]  N. Borisov,et al.  The spectrum of EG UMa , 2002 .

[25]  I. Roxburgh,et al.  On the generation of the large-scale and turbulent magnetic fields in solar-type stars , 1993 .

[26]  GU Boo : A New 0 . 6 M ⊙ Detached Eclipsing Binary , 2005 .

[27]  F. Hoyle,et al.  On the Mechanism of Accretion by Stars , 1944 .

[28]  R. Klein,et al.  Bondi Accretion in the Presence of Vorticity , 2004, astro-ph/0409454.

[29]  C. Alcock,et al.  On the number of comets around other single stars , 1986 .

[30]  M. Pinsonneault,et al.  Cataclysmic Variables: An Empirical Angular Momentum Loss Prescription from Open Cluster Data , 2001, astro-ph/0104265.

[31]  S. Sigurdsson,et al.  Cool Customers in the Stellar Graveyard. I. Limits to Extrasolar Planets Around the White Dwarf G29-38 , 2004, astro-ph/0412668.

[32]  J. Linsky,et al.  Measured Mass-Loss Rates of Solar-like Stars as a Function of Age and Activity , 2002, astro-ph/0203437.

[33]  A. Gianninas,et al.  Discovery of a Cool, Massive, and Metal-rich DAZ White Dwarf , 2004, astro-ph/0410706.

[34]  Gilles Fontaine,et al.  A study of metal abundance patterns in cool white dwarfs. I: Time-dependent calculations of gravitational settling , 1992 .

[35]  A. Jorissen,et al.  Wind accretion in binary stars — II. Accretion rates , 1996, astro-ph/9602089.

[36]  Scott J. Kenyon,et al.  Cool Metallic-Line White Dwarfs, Radial Velocities, and Interstellar Accretion , 1993 .

[37]  John H. Debes,et al.  Are There Unstable Planetary Systems around White Dwarfs , 2002 .

[38]  B. Zuckerman,et al.  Companions to white dwarfs : very low-mass stars and the brown dwarf candidate GD 165B , 1992 .

[39]  P. Plavchan,et al.  Where Are the M Dwarf Disks Older Than 10 Million Years , 2005, astro-ph/0506132.

[40]  B. Zuckerman,et al.  Orbital Separations of White Dwarf--Red Dwarf Binaries , 1996 .

[41]  Lunar,et al.  A near-infrared spectroscopic search for very-low-mass cool companions to notable DA white dwarfs , 2004 .

[42]  I. Ribas,et al.  GU Bootis: A New 0.6 M☉ Detached Eclipsing Binary , 2005, astro-ph/0505001.

[43]  M. Barstow,et al.  The Discovery of Mg II λ4481 in the White Dwarf EG 102: Evidence for Ongoing Accretion , 1997 .

[44]  S. Kawaler Angular momentum loss in low-mass stars , 1988 .

[45]  Gilles Fontaine,et al.  A study of metal abundance patterns in cool white dwarfs. III: Comparison of the predictions of the two-phase accretion model with the observations , 1993 .

[46]  G. Basri,et al.  Rotation and Activity in Mid-M to L Field Dwarfs , 2002, astro-ph/0201455.

[47]  J. Drake,et al.  Stringent X-Ray Constraints on Mass Loss from Proxima Centauri , 2002 .

[48]  Norbert Christlieb,et al.  Metal traces in white dwarfs of the SPY (ESO Supernova Ia Progenitor Survey) sample , 2005 .

[49]  H. Spruit,et al.  On magnetic braking of late-type stars , 1987 .

[50]  Gilles Fontaine,et al.  Diffusion in white dwarfs - New results and comparative study , 1986 .

[51]  J. Linsky,et al.  Observational Estimates for the Mass-Loss Rates of Alpha Centauri and Proxima Centauri Using HST Lyman-alpha Spectra , 2000, astro-ph/0011153.

[52]  J. Farihi,et al.  Low-Luminosity Companions to White Dwarfs , 2005 .

[53]  Ben Zuckerman,et al.  Metal Lines in DA White Dwarfs , 2003 .

[54]  Gregory Laughlin,et al.  The Core Accretion Model Predicts Few Jovian-Mass Planets Orbiting Red Dwarfs , 2004, astro-ph/0407309.

[55]  James R. Graham,et al.  The infrared excess of G29-38: A brown dwarf or dust? , 1990 .

[56]  M. Jura A Tidally Disrupted Asteroid around the White Dwarf G29-38 , 2003 .