Application of the Jacobi–Davidson method for spectral low-rank preconditioning in computational electromagnetics problems
暂无分享,去创建一个
Juana Cerdán | J. Mas | J. Marín | José Luis Verdú Más | Natalia Malla | J. Cerdán | J. Marín | Natalia Malla
[1] Henk A. van der Vorst,et al. Bi-CGSTAB: A Fast and Smoothly Converging Variant of Bi-CG for the Solution of Nonsymmetric Linear Systems , 1992, SIAM J. Sci. Comput..
[2] R. Harrington. Origin and development of the method of moments for field computation , 1990, IEEE Antennas and Propagation Magazine.
[3] James Clerk Maxwell,et al. A dynamical theory of the electromagnetic , 1967 .
[4] Gerard L. G. Sleijpen,et al. A Jacobi-Davidson Iteration Method for Linear Eigenvalue Problems , 1996, SIAM J. Matrix Anal. Appl..
[5] Yousef Saad,et al. Iterative methods for sparse linear systems , 2003 .
[6] Chao Yang,et al. ARPACK users' guide - solution of large-scale eigenvalue problems with implicitly restarted Arnoldi methods , 1998, Software, environments, tools.
[7] P N Scharbach,et al. A Dynamical Theory of the Electromagnetic Field , 1983 .
[8] Marcus J. Grote,et al. Parallel Preconditioning with Sparse Approximate Inverses , 1997, SIAM J. Sci. Comput..
[9] Gerard L. G. Sleijpen,et al. Jacobi-Davidson Style QR and QZ Algorithms for the Reduction of Matrix Pencils , 1998, SIAM J. Sci. Comput..
[10] Bruno Carpentieri. Sparse preconditioners for dense complex linear systems in electromagnetic applications , 2002 .
[11] Eric Darve,et al. The Fast Multipole Method I: Error Analysis and Asymptotic Complexity , 2000, SIAM J. Numer. Anal..
[12] Bruno Carpentieri,et al. A Class of Spectral Two-Level Preconditioners , 2003, SIAM J. Sci. Comput..
[13] J. Meijerink,et al. An iterative solution method for linear systems of which the coefficient matrix is a symmetric -matrix , 1977 .
[14] Luca Bergamaschi,et al. Computational experience with sequential and parallel, preconditioned Jacobi--Davidson for large, sparse symmetric matrices , 2003 .
[15] Bruno Carpentieri,et al. Sparse pattern selection strategies for robust Frobenius-norm minimization preconditioners in electromagnetism , 2000, Numer. Linear Algebra Appl..
[16] Bruno Carpentieri,et al. Sparse symmetric preconditioners for dense linear systems in electromagnetism , 2004, Numer. Linear Algebra Appl..
[17] Peter P. Silvester,et al. Finite elements for electrical engineers: Finite Elements for Electrical Engineers , 1996 .
[18] Jim Hefferon,et al. Linear Algebra , 2012 .
[19] Leslie Greengard,et al. A fast algorithm for particle simulations , 1987 .
[20] D. Wilton,et al. Electromagnetic scattering by surfaces of arbitrary shape , 1980 .
[21] Gerard L. G. Sleijpen,et al. A generalized Jacobi-Davidson iteration method for linear eigenvalue problems , 1998 .
[22] R. Luebbers,et al. The Finite Difference Time Domain Method for Electromagnetics , 1993 .
[23] Bruno Carpentieri,et al. Combining Fast Multipole Techniques and an Approximate Inverse Preconditioner for Large Electromagnetism Calculations , 2005, SIAM J. Sci. Comput..