Application of the Jacobi–Davidson method for spectral low-rank preconditioning in computational electromagnetics problems

We consider the numerical solution of linear systems arising from computational electromagnetics applications. For large scale problems the solution is usually obtained iteratively with a Krylov subspace method. It is well known that for ill conditioned problems the convergence of these methods can be very slow or even it may be impossible to obtain a satisfactory solution. To improve the convergence a preconditioner can be used, but in some cases additional strategies are needed. In this work we study the application of spectral low-rank updates (SLRU) to a previously computed sparse approximate inverse preconditioner. The updates are based on the computation of a small subset of the eigenpairs closest to the origin. Thus, the performance of the SLRU technique depends on the method available to compute the eigenpairs of interest. The SLRU method was first used using the IRA’s method implemented in ARPACK. In this work we investigate the use of a Jacobi–Davidson method, in particular its JDQR variant. The results of the numerical experiments show that the application of the JDQR method to obtain the spectral low-rank updates can be quite competitive compared with the IRA’s method.

[1]  Henk A. van der Vorst,et al.  Bi-CGSTAB: A Fast and Smoothly Converging Variant of Bi-CG for the Solution of Nonsymmetric Linear Systems , 1992, SIAM J. Sci. Comput..

[2]  R. Harrington Origin and development of the method of moments for field computation , 1990, IEEE Antennas and Propagation Magazine.

[3]  James Clerk Maxwell,et al.  A dynamical theory of the electromagnetic , 1967 .

[4]  Gerard L. G. Sleijpen,et al.  A Jacobi-Davidson Iteration Method for Linear Eigenvalue Problems , 1996, SIAM J. Matrix Anal. Appl..

[5]  Yousef Saad,et al.  Iterative methods for sparse linear systems , 2003 .

[6]  Chao Yang,et al.  ARPACK users' guide - solution of large-scale eigenvalue problems with implicitly restarted Arnoldi methods , 1998, Software, environments, tools.

[7]  P N Scharbach,et al.  A Dynamical Theory of the Electromagnetic Field , 1983 .

[8]  Marcus J. Grote,et al.  Parallel Preconditioning with Sparse Approximate Inverses , 1997, SIAM J. Sci. Comput..

[9]  Gerard L. G. Sleijpen,et al.  Jacobi-Davidson Style QR and QZ Algorithms for the Reduction of Matrix Pencils , 1998, SIAM J. Sci. Comput..

[10]  Bruno Carpentieri Sparse preconditioners for dense complex linear systems in electromagnetic applications , 2002 .

[11]  Eric Darve,et al.  The Fast Multipole Method I: Error Analysis and Asymptotic Complexity , 2000, SIAM J. Numer. Anal..

[12]  Bruno Carpentieri,et al.  A Class of Spectral Two-Level Preconditioners , 2003, SIAM J. Sci. Comput..

[13]  J. Meijerink,et al.  An iterative solution method for linear systems of which the coefficient matrix is a symmetric -matrix , 1977 .

[14]  Luca Bergamaschi,et al.  Computational experience with sequential and parallel, preconditioned Jacobi--Davidson for large, sparse symmetric matrices , 2003 .

[15]  Bruno Carpentieri,et al.  Sparse pattern selection strategies for robust Frobenius-norm minimization preconditioners in electromagnetism , 2000, Numer. Linear Algebra Appl..

[16]  Bruno Carpentieri,et al.  Sparse symmetric preconditioners for dense linear systems in electromagnetism , 2004, Numer. Linear Algebra Appl..

[17]  Peter P. Silvester,et al.  Finite elements for electrical engineers: Finite Elements for Electrical Engineers , 1996 .

[18]  Jim Hefferon,et al.  Linear Algebra , 2012 .

[19]  Leslie Greengard,et al.  A fast algorithm for particle simulations , 1987 .

[20]  D. Wilton,et al.  Electromagnetic scattering by surfaces of arbitrary shape , 1980 .

[21]  Gerard L. G. Sleijpen,et al.  A generalized Jacobi-Davidson iteration method for linear eigenvalue problems , 1998 .

[22]  R. Luebbers,et al.  The Finite Difference Time Domain Method for Electromagnetics , 1993 .

[23]  Bruno Carpentieri,et al.  Combining Fast Multipole Techniques and an Approximate Inverse Preconditioner for Large Electromagnetism Calculations , 2005, SIAM J. Sci. Comput..