Strong Evolution in the Luminosity-Velocity Relation at z ≳ 1?

We present a method for constraining the evolution of the galaxy luminosity-velocity (LV) relation in hierarchical scenarios of structure formation. The comoving number density of dark matter halos with circular velocities of 200 km s-1 is predicted in observationally favored cold dark matter (CDM) cosmologies to be nearly constant over the redshift range 0 ≲ z ≲ 5. Any observed evolution in the density of bright galaxies implies in turn a corresponding evolution in the LV relation. We consider several possible forms of evolution for the zero point of the LV relation and predict the corresponding evolution in galaxy number density. The Hubble Deep Field suggests a large deficit of bright (MV < -19) galaxies at 1.4 ≲ z ≲ 2. If taken at face value, this implies a dimming of the LV zero point by roughly 2 mag. Deep, wide-field, near-IR selected surveys will provide more secure measurements to compare with our predictions.

[1]  R. Somerville,et al.  Profiles of dark haloes: evolution, scatter and environment , 1999, astro-ph/9908159.

[2]  F. Hammer,et al.  Building galaxies : from the primordial universe to the present : proceedings of the XIXth rencontres de Moriond, Les Arcs, France, 13-20 March 1999 , 2000 .

[3]  J. Newman,et al.  Measuring the Cosmic Equation of State with Counts of Galaxies , 1999, The Astrophysical journal.

[4]  M. Postman,et al.  Evidence for X-Ray Emission from a Large-Scale Filament of Galaxies? , 1999, The Astrophysical journal.

[5]  A. Gonzalez,et al.  The Velocity Function of Galaxies , 1999, astro-ph/9908075.

[6]  A. Fontana,et al.  High-redshift evolution of optical- and infrared-selected galaxies: a comparison with cold dark matter scenarios , 1999, astro-ph/9909126.

[7]  D. Crampton,et al.  Internal Kinematics of Blue Canada-France Redshift Survey Galaxies at z ~ 0.6 , 1999 .

[8]  Ravi K. Sheth Giuseppe Tormen Large scale bias and the peak background split , 1999, astro-ph/9901122.

[9]  Stefan Gottloeber,et al.  Galaxies in N-Body Simulations: Overcoming the Overmerging Problem , 1997, astro-ph/9708191.

[10]  R. Wechsler,et al.  The nature of high-redshift galaxies , 1998, astro-ph/0006364.

[11]  U. California,et al.  Semi-analytic modelling of galaxy formation: The local Universe , 1998, astro-ph/9802268.

[12]  Jr.,et al.  The Global Schmidt law in star forming galaxies , 1997, astro-ph/9712213.

[13]  G. Bryan,et al.  Statistical Properties of X-Ray Clusters: Analytic and Numerical Comparisons , 1997, astro-ph/9710107.

[14]  S. White,et al.  The formation of galactic discs , 1997, astro-ph/9707093.

[15]  N. Vogt,et al.  Optical Rotation Curves of Distant Field Galaxies: Sub-L⋆ Systems , 1997, astro-ph/9701244.

[16]  A. Klypin,et al.  Adaptive Refinement Tree: A New High-Resolution N-Body Code for Cosmological Simulations , 1997, astro-ph/9701195.

[17]  S. Cole,et al.  Using the evolution of clusters to constrain Omega , 1996, astro-ph/9601088.

[18]  S. White,et al.  The Structure of cold dark matter halos , 1995, astro-ph/9508025.

[19]  O. Fèvre,et al.  The Canada-France Redshift Survey. VI. Evolution of the Galaxy Luminosity Function to Z approximately 1 , 1995, astro-ph/9507079.

[20]  G. Kauffmann,et al.  The formation and evolution of galaxies within merging dark matter haloes , 1993 .

[21]  G. Vaucouleurs,et al.  The central velocity dispersion in elliptical and lenticular galaxies as an extragalactic distance indicator , 1982 .

[22]  William H. Press,et al.  Formation of Galaxies and Clusters of Galaxies by Self-Similar Gravitational Condensation , 1974 .