On Compacting Test Response Data Containing Unknown Values

The design of a test response compactor called a Block Compactoris given. Block Compactors belong to a new class of compactorscalled Finite Memory Compactors. Different from spacecompactors, finite memory compactors contain memory elements.Also unlike time compactors, finite memory compactors havefinite impulse response. These properties give finite memorycompactors the ability to achieve higher compaction ratios thanspace compactors and still be able to tolerate unknown values intest responses. The proposed Block Compactors, as an instance offinite memory compactors generate a signature of response data inseveral scan cycles. Results presented on several industrial designsshow that Block Compactors provide better test quality and higherdata compaction than earlier works on test response compactors.

[1]  Subhasish Mitra,et al.  X-compact: an efficient response compaction technique for test cost reduction , 2002, Proceedings. International Test Conference.

[2]  J.H. Patel,et al.  Test set compaction algorithms for combinational circuits , 1998, 1998 IEEE/ACM International Conference on Computer-Aided Design. Digest of Technical Papers (IEEE Cat. No.98CB36287).

[3]  Nur A. Touba,et al.  Test vector encoding using partial LFSR reseeding , 2001, Proceedings International Test Conference 2001 (Cat. No.01CH37260).

[4]  Janak H. Patel,et al.  Reducing test application time for full scan embedded cores , 1999, Digest of Papers. Twenty-Ninth Annual International Symposium on Fault-Tolerant Computing (Cat. No.99CB36352).

[5]  Hans-Joachim Wunderlich,et al.  Tailoring ATPG for embedded testing , 2001, Proceedings International Test Conference 2001 (Cat. No.01CH37260).

[6]  Irith Pomeranz,et al.  On output response compression in the presence of unknown output values , 2002, DAC '02.

[7]  Nilanjan Mukherjee,et al.  Embedded deterministic test for low cost manufacturing test , 2002, Proceedings. International Test Conference.

[8]  Sudhakar M. Reddy,et al.  Convolutional compaction of test responses , 2003, International Test Conference, 2003. Proceedings. ITC 2003..

[9]  Nur A. Touba,et al.  Synthesis of zero-aliasing elementary-tree space compactors , 1998, Proceedings. 16th IEEE VLSI Test Symposium (Cat. No.98TB100231).

[10]  Brion L. Keller,et al.  OPMISR: the foundation for compressed ATPG vectors , 2001, Proceedings International Test Conference 2001 (Cat. No.01CH37260).

[11]  Ajay Khoche,et al.  Packet-based input test data compression techniques , 2002, Proceedings. International Test Conference.

[12]  Alex Orailoglu,et al.  Test volume and application time reduction through scan chain concealment , 2001, Proceedings of the 38th Design Automation Conference (IEEE Cat. No.01CH37232).

[13]  Irith Pomeranz,et al.  COMPACTEST: a method to generate compact test sets for combinational circuits , 1993, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..

[14]  Melvin A. Breuer,et al.  Digital systems testing and testable design , 1990 .

[15]  Mark G. Karpovsky,et al.  Testing Computer Hardware through Data Compression in Space and Time , 1983, ITC.

[16]  B. Koneman,et al.  LFSR-Coded Test Patterns for Scan Designs , 1993 .

[17]  Irith Pomeranz,et al.  On test data volume reduction for multiple scan chain designs , 2003, TODE.

[18]  Janak H. Patel,et al.  Application of Saluja-Karpovsky compactors to test responses with many unknowns , 2003, Proceedings. 21st VLSI Test Symposium, 2003..