A proof that the discrete singular convolution (DSC)/Lagrange-distributed approximating function (LDAF) method is inferior to high order finite differences

Finite differences approximate the mth derivative of a function u(x) by a series @?"j"="-"N^Nd"j^(^m^)u(x"j), where the x"j are the grid points. The closely-related discrete singular convolution (DSC) and Lagrange-distributed approximating function (LDAF) methods, treated here as a single algorithm, approximate derivatives in the same way as finite differences but with different numerical weights that depend upon a free parameter a. By means of Fourier analysis and error theorems, we show that the DSC is worse than the standard finite differences in differentiating exp(ikx) for all k when a>=a"F"D where a"F"D=1/N+1 with N as the stencil width is the value of the DSC parameter that makes its weights most closely resemble those of finite differences. For a

[1]  Olav Holberg,et al.  COMPUTATIONAL ASPECTS OF THE CHOICE OF OPERATOR AND SAMPLING INTERVAL FOR NUMERICAL DIFFERENTIATION IN LARGE-SCALE SIMULATION OF WAVE PHENOMENA* , 1987 .

[2]  David W. Zingg,et al.  Comparison of High-Accuracy Finite-Difference Methods for Linear Wave Propagation , 2000, SIAM J. Sci. Comput..

[3]  Kenneth L. Bowers,et al.  Sinc methods for quadrature and differential equations , 1987 .

[4]  David W. Zingg,et al.  High-Accuracy Finite-Difference Schemes for Linear Wave Propagation , 1996, SIAM J. Sci. Comput..

[5]  B. Fornberg High-order finite differences and the pseudospectral method on staggered grids , 1990 .

[6]  P. Wesseling,et al.  On the construction of accurate difference schemes for hyperbolic partial differential equations , 1971 .

[7]  O. Holberg,et al.  TOWARDS OPTIMUM ONE‐WAY WAVE PROPAGATION1 , 1988 .

[8]  Shan Zhao,et al.  Numerical solution of the Helmholtz equation with high wavenumbers , 2004 .

[9]  A frequency accurate spatial derivative finite difference approximation , 1997 .

[10]  Changhoon Lee,et al.  A new compact spectral scheme for turbulence simulations , 2002 .

[11]  Datta V. Gaitonde,et al.  Optimized Compact-Difference-Based Finite-Volume Schemes for Linear Wave Phenomena , 1997 .

[12]  C. Tam,et al.  Dispersion-relation-preserving finite difference schemes for computational acoustics , 1993 .

[13]  S. Yau Mathematics and its applications , 2002 .

[14]  Jeffrey L. Young,et al.  Practical aspects of higher-order numerical schemes for wave propagation phenomena , 1999 .

[15]  David P. Lockard,et al.  High-accuracy algorithms for computational aeroacoustics , 1995 .

[16]  Decheng Wan,et al.  Numerical solution of incompressible flows by discrete singular convolution , 2002 .

[17]  Guo-Wei Wei,et al.  Discrete singular convolution for the solution of the Fokker–Planck equation , 1999 .

[18]  Nikolaus A. Adams,et al.  A High-Resolution Hybrid Compact-ENO Scheme for Shock-Turbulence Interaction Problems , 1996 .

[19]  Guo-Wei Wei,et al.  A comparison of the spectral and the discrete singular convolution schemes for the KdV-type equations , 2002 .

[20]  George Boole,et al.  A Treatise on the Calculus of Finite Differences: THE APPROXIMATE SUMMATION OF SERIES , 2009 .

[21]  A frequency accuraterth order spatial derivative finite difference approximation , 1999 .

[22]  Bengt Fornberg,et al.  A practical guide to pseudospectral methods: Introduction , 1996 .

[23]  D. Mazziotti Comment on ``High order finite difference algorithms for solving the Schrödinger equation in molecular dynamics'' [J. Chem. Phys. 111, 10827 (1999)] , 2001 .

[24]  Omar A. Sharafeddin,et al.  Analytic banded approximation for the discretized free propagator , 1991 .

[25]  Nikolaus A. Adams,et al.  Direct Numerical Simulation of Turbulent Compression Ramp Flow , 1998 .

[26]  Tim Colonius,et al.  Numerically nonreflecting boundary and interface conditions for compressible flow and aeroacoustic computations , 1997 .

[27]  F. Stenger Summary of Sinc numerical methods , 2000 .

[28]  John P. Boyd,et al.  Sum-accelerated pseudospectral methods: the Euler-accelerated sinc algorithm , 1991 .

[29]  S. Lele Compact finite difference schemes with spectral-like resolution , 1992 .

[30]  Shlomo Ta'asan,et al.  Finite difference schemes for long-time integration , 1994 .

[31]  Spectral difference Lanczos method for efficient time propagation in quantum control theory. , 2004, The Journal of chemical physics.

[32]  L. Trefethen Spectral Methods in MATLAB , 2000 .

[33]  David A. Mazziotti,et al.  Spectral difference methods for solving differential equations , 1999 .

[34]  Stephen K. Gray,et al.  Dispersion fitted finite difference method with applications to molecular quantum mechanics. , 2001 .

[35]  Shan Zhao,et al.  Comparison of the Discrete Singular Convolution and Three Other Numerical Schemes for Solving Fisher's Equation , 2003, SIAM J. Sci. Comput..

[36]  Yuguo Li Wavenumber-Extended High-Order Upwind-Biased Finite-Difference Schemes for Convective Scalar Transport , 1997 .

[37]  O. Baysal,et al.  Investigation of Dispersion-Relation-Preserving Scheme and Spectral Analysis Methods for Acoustic Waves , 1997 .

[38]  Yen Liu,et al.  Fourier Analysis of Numerical Algorithms for the Maxwell Equations , 1993 .

[39]  D. Mazziotti,et al.  Spectral differences in real-space electronic structure calculations. , 2004, The Journal of chemical physics.

[40]  J. Boyd Weakly Nonlocal Solitary Waves and Beyond-All-Orders Asymptotics , 1998 .

[41]  John P. Boyd,et al.  A lag-averaged generalization of Euler's method for accelerating series , 1995 .

[42]  J. Boyd Sum-accelerated pseudospectral methods: Finite differences and sech-weighted differences , 1994 .