Optimisation of fully adaptive Bayesian charts for infinite-horizon processes

This article presents a model for the economic design and optimisation of an adaptive -chart used to monitor the process mean in infinite runs. Assignable causes may randomly affect the mean of the process by shifting it from its target value to an undesirable level. The proposed model allows the determination of the scheme parameters that minimise the total expected quality cost of the procedure. The monitoring mechanism of the process employs a Bayesian chart and at each sampling instance the economically optimum design parameters of the chart are estimated using the Bayes theorem. The effectiveness of the proposed model is estimated through economic comparisons with simpler variable-parameter charts and even simpler fixed-parameter charts. It is shown that significant economic improvement can be achieved through the use of the new model.

[1]  A. Goel,et al.  Economically Optimum Design of Cusum Charts , 1973 .

[2]  Viliam Makis,et al.  Multivariate Bayesian process control for a finite production run , 2009, Eur. J. Oper. Res..

[3]  H. M. Taylor Markovian sequential replacement processes , 1965 .

[4]  M. A. Girshick,et al.  A BAYES APPROACH TO A QUALITY CONTROL MODEL , 1952 .

[5]  J. A. Nachlas,et al.  X charts with variable sampling intervals , 1988 .

[6]  J. M. Calabrese Bayesian process control for attributes , 1995 .

[7]  Isaac N. Gibra Economically Optimal Determination of the Parameters of np-Control Charts , 1971 .

[8]  Changsoon Park,et al.  Economic design of a variable sample size -chart , 1994 .

[9]  Evan L. Porteus,et al.  Opportunities for Improved Statistical Process Control , 1997 .

[10]  George Tagaras,et al.  A dynamic programming approach to the economic design of X-charts , 1994 .

[11]  A. Goel,et al.  An Algorithm for the Determination of the Economic Design of -Charts Based on Duncan's Model , 1968 .

[12]  J. Bather Control Charts and the Minimization of Costs , 1963 .

[13]  George Rigas,et al.  Using economically designed Shewhart and adaptive ―X charts for monitoring the quality of tiles , 2007, Qual. Reliab. Eng. Int..

[14]  George Nenes,et al.  Two-Sided Bayesian X Control Charts for Short Production Runs , 2006 .

[15]  Seyed Taghi Akhavan Niaki,et al.  A parameter-tuned genetic algorithm for statistically constrained economic design of multivariate CUSUM control charts: a Taguchi loss approach , 2012, Int. J. Syst. Sci..

[16]  Isaac N. Gibra Economically Optimal Determination of the Parameters of np-Control Charts , 1978 .

[17]  George Nenes,et al.  The economically designed two-sided Bayesian I control chart , 2007, Eur. J. Oper. Res..

[18]  Antonio Fernando Branco Costa,et al.  Economic design of X charts with variable parameters: The Markov chain approach , 2001 .

[19]  Bassim Mansour,et al.  MINIMUM COST QUALITY CONTROL TESTS , 2008, IRAQI JOURNAL OF STATISTICAL SCIENCES.

[20]  W. K. Chiu,et al.  Economic Design of np Charts for Processes Subject to a Multiplicity of Assignable Causes , 1976 .

[21]  George Tagaras,et al.  Comparing the Effectiveness of Various Bayesian X Control Charts , 2002, Oper. Res..

[22]  B. Colosimo,et al.  ECONOMIC DESIGN OF A BAYESIAN ADAPTIVE CONTROL CHART FOR NONCONFORMITIES , 1999 .

[23]  이경택,et al.  Variable Sampling Interval x Control Charts with An Improved Switching Rule , 1997 .

[24]  W. K. Chiu,et al.  The Economic Design of Cusum Charts for Controlling Normal Means , 1974 .

[25]  Tapas K. Das,et al.  An economic design model for X¯ charts with random sampling policies , 1997 .

[26]  E. Collani A unified approach to optimal process control , 1988 .

[27]  Viliam Makis,et al.  Multivariate Bayesian Control Chart , 2008, Oper. Res..

[28]  H. M. Taylor Statistical Control of a Gaussian Process , 1967 .

[29]  Changsoon Park,et al.  Economic Design of a Variable Sampling Rate X-bar Chart , 1999 .

[30]  George Tagaras,et al.  Dynamic control charts for finite production runs , 1996 .

[31]  Eugenio K. Epprecht,et al.  ECONOMIC DESIGN OF A VP X CHART , 2001 .

[32]  K. E. Case,et al.  THE ECONOMICALLY-BASED EWMA CONTROL CHART , 1994 .

[33]  H. M. Taylor The Economic Design of Cumulative Sum Control Charts , 1968 .

[34]  Douglas C. Montgomery,et al.  Economical Quality Control Policies for a Single Cause System , 1981 .

[35]  George Nenes,et al.  A new approach for the economic design of fully adaptive control charts , 2011 .

[36]  TAPAS K. DAS,et al.  Economic design of dual-sampling-interval policies for X¯ charts with and without run rules , 1997 .

[37]  A. Duncan The Economic Design of -Charts When There is a Multiplicity of Assignable Causes , 1971 .

[38]  Lonnie C. Vance,et al.  The Economic Design of Control Charts: A Unified Approach , 1986 .

[39]  Acheson J. Duncan,et al.  The Economic Design of X Charts Used to Maintain Current Control of a Process , 1956 .