Numerical Univariate Polynomial GCD

We formalize the notion of approximate GCD for univariate poly-nomials given with limited accuracy and then address the problem of its computation. Algebraic concepts are applied in order to provide a solid foundation for a numerical approach. We exhibit the limitations of the euclidean algorithm through experiments, show that existing methods only solve part of the problem and assert its worst-case complexity. A rigorous geometrical point of view is given in the parameter space of all input polynomials and SVD computations on subresultants are applied in order to derive upper bounds on the degree of the approximate GCD. Then, we establish a certiication theorem and state the conditions under which it determines the precise GCD degree.

[1]  S. R. Czapor,et al.  Computer Algebra , 1983, Computing Supplementa.

[2]  Thomas W. Sederberg,et al.  Improperly parametrized rational curves , 1986, Comput. Aided Geom. Des..

[3]  N. A'campo La fonction zêta d'une monodromie , 1975 .

[4]  Stephen M. Watt,et al.  The singular value decomposition for polynomial systems , 1995, ISSAC '95.

[5]  Dinesh Manocha,et al.  SOLVING SYSTEMS OF POLYNOMIAL EQUATIONS , 2002 .

[6]  W. S. Brown On Euclid's algorithm and the computation of polynomial greatest common divisors , 1971, SYMSAC '71.

[7]  Dinesh Manocha,et al.  Algorithms for Intersecting Parametric and Algebraic Curves II: Multiple Intersections , 1995, CVGIP Graph. Model. Image Process..

[8]  Jean-Pierre Merlet,et al.  Direct Kinematics and Assembly Modes of Parallel Manipulators , 1992 .

[9]  A. O. Gelʹfond Transcendental and Algebraic Numbers , 1960 .

[10]  S. Smale,et al.  Complexity of Bézout’s theorem. I. Geometric aspects , 1993 .

[11]  S. P. Mudur,et al.  Three-dimensional computer vision: a geometric viewpoint , 1993 .

[12]  N. Karcanias,et al.  A matrix pencil based numerical method for the computation of the GCD of polynomials , 1994, IEEE Trans. Autom. Control..

[13]  Matu-Tarow Noda,et al.  Approximate GCD and its application to ill-conditioned algebraic equations , 1991 .

[14]  Zur inhomogenen Eliminationstheorie , 1948 .

[15]  Timothy F. Havel An evaluation of computational strategies for use in the determination of protein structure from distance constraints obtained by nuclear magnetic resonance. , 1991, Progress in biophysics and molecular biology.

[16]  George E. Collins,et al.  Subresultants and Reduced Polynomial Remainder Sequences , 1967, JACM.

[17]  H. M. Möller,et al.  Multivariate polynomial equations with multiple zeros solved by matrix eigenproblems , 1995 .

[18]  Rida T. Farouki,et al.  On the numerical condition of polynomials in Bernstein form , 1987, Comput. Aided Geom. Des..

[19]  B. S. Garbow,et al.  Matrix Eigensystem Routines — EISPACK Guide , 1974, Lecture Notes in Computer Science.

[20]  Xiaomei Yang Rounding Errors in Algebraic Processes , 1964, Nature.

[21]  Hans J. Stetter,et al.  Detection and Validation of Clusters of Polynomial Zeros , 1997, J. Symb. Comput..

[22]  Enrico Bombieri,et al.  Products of polynomials in many variables , 1990 .

[23]  Marie-Françoise Roy,et al.  Sturm—Habicht Sequences, Determinants and Real Roots of Univariate Polynomials , 1998 .

[24]  Thomas W. Sederberg,et al.  Best linear common divisors for approximate degree reduction , 1993, Comput. Aided Des..

[25]  A. Ostrowski Solution of equations and systems of equations , 1967 .