A double templated electrodeposition method for the fabrication of arrays of metal nanodots

Using a double template method, we have fabricated large areas of either isolated or interconnected arrays of Ni, Co, Pt and Au dots with variable diameters and separations. This was achieved by the electrochemical deposition of the metal inside spherical cavities formed within macroporous poly(pyrrole) secondary templates which were themselves prepared by electrodeposition around templates formed of self-assembled poly(styrene) spheres assembled on evaporated Au substrates. The advantage of using poly(pyrrole) films as a secondary template is that the conductivity of the polymer can be electrochemically destroyed either temporary or permanently. Permanent destruction of the conductivity of the poly(pyrrole) film allows it to be used as an insulating template over a wide potential range so that it is possible to deposit a wide range of metals, alloys, semiconductors or oxides as nanoscale patterned arrays. This new approach represents a simple approach to the fabrication of two and three-dimensional submicron patterned arrays which may find application in magnetic recording media, photonic crystals and biosensors.

[1]  A. Stein,et al.  A chemical synthesis of periodic macroporous NiO and metallic Ni , 1999 .

[2]  C. Mirkin,et al.  Protein Nanoarrays Generated By Dip-Pen Nanolithography , 2002, Science.

[3]  Mark L. Schattenburg,et al.  Fabrication of large area nanostructured magnets by interferometric lithography , 1998 .

[4]  Vos,et al.  Preparation of photonic crystals made of air spheres in titania , 1998, Science.

[5]  D. Sellmyer,et al.  Magnetism of nanophase composites , 2002 .

[6]  R. Baughman,et al.  Metal sphere photonic crystals by nanomolding. , 2001, Journal of the American Chemical Society.

[7]  R. V. Van Duyne,et al.  A nanoscale optical biosensor: sensitivity and selectivity of an approach based on the localized surface plasmon resonance spectroscopy of triangular silver nanoparticles. , 2002, Journal of the American Chemical Society.

[8]  Axel Scherer,et al.  Fabrication of High-Density Nanostructures by Electron Beam Lithography , 1998 .

[9]  Joy Cheng,et al.  Formation of a Cobalt Magnetic Dot Array via Block Copolymer Lithography , 2001 .

[10]  Baughman,et al.  Carbon structures with three-dimensional periodicity at optical wavelengths , 1998, Science.

[11]  Stephen Y. Chou,et al.  Nano-compact disks with 400 Gbit/in2 storage density fabricated using nanoimprint lithography and read with proximal probe , 1997 .

[12]  G. Ozin,et al.  Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 micrometres , 2000, Nature.

[13]  Yurii A. Vlasov,et al.  Synthesis of Photonic Crystals for Optical Wavelengths from Semiconductor Quantum Dots , 1999 .

[14]  Miguel Holgado,et al.  Germanium FCC Structure from a Colloidal Crystal Template , 2000 .

[15]  Toshihiko Kanayama,et al.  A visible–near infrared range photonic crystal made up of Si nanopillars , 1999 .

[16]  A. Imhof,et al.  Ordered macroporous materials by emulsion templating , 1997, Nature.

[17]  Philip N. Bartlett,et al.  Magnetic antidot arrays from self-assembly template methods , 2003 .

[18]  P. J. Ollivier,et al.  Ordered mesoporous polymers of tunable pore size from colloidal silica templates. , 1999, Science.

[19]  A. Stein,et al.  Synthesis of macroporous minerals with highly ordered three-dimensional arrays of spheroidal voids , 1998, Science.

[20]  Jeremy J. Baumberg,et al.  Highly Ordered Macroporous Gold and Platinum Films Formed by Electrochemical Deposition through Templates Assembled from Submicron Diameter Monodisperse Polystyrene Spheres , 2002 .

[21]  Younan Xia,et al.  Macroporous Membranes with Highly Ordered and Three‐Dimensionally Interconnected Spherical Pores , 1998 .

[22]  M. M. Sigalas,et al.  Optical photonic crystals fabricated from colloidal systems , 1999, 2111.04905.

[23]  Stephen Y. Chou,et al.  Nanolithographically defined magnetic structures and quantum magnetic disk (invited) , 1996 .

[24]  M. Wanke,et al.  Laser Rapid Prototyping of Photonic Band-Gap Microstructures , 1997, Science.

[25]  E. Wassermann,et al.  Fabrication of large scale periodic magnetic nanostructures , 1998 .

[26]  M. Sander,et al.  Nanoparticle Arrays on Surfaces Fabricated Using Anodic Alumina Films as Templates , 2003 .

[27]  P. Bartlett,et al.  Templated electrochemical deposition of nanostructured macroporous PbO2 , 2002 .

[28]  O. Velev,et al.  Porous silica via colloidal crystallization , 1997, Nature.

[29]  R. Baughman,et al.  Synthesis and Magnetic Behavior of Periodic Nickel Sphere Arrays , 2003 .

[30]  L. Zhang,et al.  Fabrication and magnetic behaviour of Co film with ordered nanodot arrays , 2003 .

[31]  Jane F. Bertone,et al.  Preparation of Macroporous Metal Films from Colloidal Crystals , 1999 .

[32]  Philip N. Bartlett,et al.  Electrochemical deposition of macroporous magnetic networks using colloidal templates , 2003 .

[33]  J. Baumberg,et al.  Confined Surface Plasmons in Gold Photonic Nanocavities , 2001 .

[34]  G. Whitesides,et al.  Soft lithographic methods for nano-fabrication , 1997 .

[35]  S. Chou,et al.  Study of nanoscale magnetic structures fabricated using electron‐beam lithography and quantum magnetic disk , 1994 .

[36]  P. Bartlett,et al.  Electrochemical syntheses of highly ordered macroporous conducting polymers grown around self-assembled colloidal templates , 2001 .

[37]  R. Baughman,et al.  Optical studies of metal-infiltrated opal photonic crystals , 2001 .

[38]  P. J. Bedrossian,et al.  Magnetic force microscopy of single-domain cobalt dots patterned using interference lithography , 1996 .