(18)F-labeled rhodamines as potential myocardial perfusion agents: comparison of pharmacokinetic properties of several rhodamines.

[1]  S. Treves,et al.  Preliminary evaluation of 18F-rhodamine 6G as a tumor-imaging agent , 2013 .

[2]  D. Berman,et al.  Phase II safety and clinical comparison with single-photon emission computed tomography myocardial perfusion imaging for detection of coronary artery disease: flurpiridaz F 18 positron emission tomography. , 2013, Journal of the American College of Cardiology.

[3]  S. Treves,et al.  Effect of the prosthetic group on the pharmacologic properties of 18F-labeled rhodamine B, a potential myocardial perfusion agent for positron emission tomography (PET). , 2012, Journal of medicinal chemistry.

[4]  J. Maddahi Properties of an ideal PET perfusion tracer: New PET tracer cases and data , 2012, Journal of Nuclear Cardiology.

[5]  D. Berman,et al.  Improvement in PET myocardial perfusion image quality and quantification with flurpiridaz F 18 , 2012, Journal of Nuclear Cardiology.

[6]  D. Dey,et al.  Automatic 3D registration of dynamic stress and rest (82)Rb and flurpiridaz F 18 myocardial perfusion PET data for patient motion detection and correction. , 2011, Medical physics.

[7]  S. Nekolla,et al.  The next generation of cardiac positron emission tomography imaging agents: discovery of flurpiridaz F-18 for detection of coronary disease. , 2011, Seminars in nuclear medicine.

[8]  A. Fischman,et al.  Evaluation of (4-[18F]Fluorophenyl)triphenylphosphonium Ion. A Potential Myocardial Blood Flow Agent for PET , 2011, Molecular Imaging and Biology.

[9]  S. Nekolla,et al.  Simplified Quantification of Myocardial Flow Reserve with flurpiridaz F 18: Validation with Microspheres in a Pig Model , 2011, The Journal of Nuclear Medicine.

[10]  S. Treves,et al.  Biodistribution and stability studies of [18F]fluoroethylrhodamine B, a potential PET myocardial perfusion agent. , 2010, Nuclear medicine and biology.

[11]  S. Robinson,et al.  Cardiac imaging and safety evaluation of BMS747158, a novel PET myocardial perfusion imaging agent, in chronic myocardial compromised rabbits , 2010, Journal of nuclear cardiology : official publication of the American Society of Nuclear Cardiology.

[12]  Xianzhong Zhang,et al.  Preparation and biodistribution of [18F]FP2OP as myocardial perfusion imaging agent for positron emission tomography. , 2010, Bioorganic & medicinal chemistry.

[13]  C. Afonso,et al.  Synthesis and applications of Rhodamine derivatives as fluorescent probes. , 2009, Chemical Society reviews.

[14]  Takahiro Higuchi,et al.  Cardiac positron emission tomography. , 2009, Journal of the American College of Cardiology.

[15]  S. Weise,et al.  A phase I study evaluating dosimetry and myocardial pharmacokinetic behavior of BFPET, a new F-18 labeled tracer for myocardial perfusion imaging , 2009 .

[16]  S. Robinson,et al.  Synthesis and biological evaluation of pyridazinone analogues as potential cardiac positron emission tomography tracers. , 2008, Journal of medicinal chemistry.

[17]  S. Nekolla,et al.  Initial Characterization of an 18F-Labeled Myocardial Perfusion Tracer , 2008, Journal of Nuclear Medicine.

[18]  Mary Guaraldi,et al.  BMS-747 158-02: A novel PET myocardial perfusion imaging agent , 2007, Journal of nuclear cardiology : official publication of the American Society of Nuclear Cardiology.

[19]  S. Robinson,et al.  Mechanism of uptake and retention of F-18 BMS-747 158-02 in cardiomyocytes: a novel PET myocardial imaging agent , 2007, Journal of nuclear cardiology : official publication of the American Society of Nuclear Cardiology.

[20]  L. Becker,et al.  Assessment of Severity of Coronary Artery Stenosis in a Canine Model Using the PET Agent 18F-Fluorobenzyl Triphenyl Phosphonium: Comparison with 99mTc-Tetrofosmin , 2007, Journal of Nuclear Medicine.

[21]  R. Dannals,et al.  Characterization of uptake of the new PET imaging compound 18F-fluorobenzyl triphenyl phosphonium in dog myocardium. , 2006, Journal of Nuclear Medicine.

[22]  B. Abraham,et al.  Photophysical, Photochemical, and Tumor-selectivity Properties of Bromine Derivatives of Rhodamine-123 , 2005, Photochemistry and photobiology.

[23]  Christopher J Palestro,et al.  Radionuclide imaging of the parathyroid glands. , 2005, Seminars in nuclear medicine.

[24]  R. Huesman,et al.  Kinetic analysis of 18F-fluorodihydrorotenone as a deposited myocardial flow tracer: comparison to 201Tl. , 2004, Journal of nuclear medicine : official publication, Society of Nuclear Medicine.

[25]  R. Dannals,et al.  Radiosynthesis of 3-[18F]fluoropropyl and 4-[ 18F]fluorobenzyl triarylphosphonium ions , 2004 .

[26]  R. Batey,et al.  An expedient synthesis of cationic Rhodamine fluorescent probes suitable for conjugation to amino acids and peptides , 2003 .

[27]  A. Studenov,et al.  Synthesis and properties of 18F-labeled potential myocardial blood flow tracers. , 2001, Nuclear medicine and biology.

[28]  M. Goodman,et al.  Synthesis and evaluation of a new fluorine-18 labeled rotenoid as a potential PET probe of mitochondrial complex I activity , 1999 .

[29]  T. Fujiwara,et al.  Fluorescent dye rhodamine 6G as a molecular probe to study drug resistance of C6 rat glioma cells , 1992, Journal of Neuro-Oncology.

[30]  I. L. Arbeloa,et al.  Dimeric states of rhodamine B , 1982 .

[31]  M. Javadi,et al.  Advances in PET myocardial perfusion imaging: F-18 labeled tracers , 2011, Annals of Nuclear Medicine.

[32]  I. Kertész,et al.  Synthesis of fluorine-18 labeled rhodamine B: a potential PET myocardial perfusion imaging agent , 2011 .

[33]  S. Robinson,et al.  Assessment of 18F-labeled mitochondrial complex I inhibitors as PET myocardial perfusion imaging agents in rats, rabbits, and primates , 2008, European Journal of Nuclear Medicine and Molecular Imaging.

[34]  Josef Machac,et al.  Cardiac positron emission tomography imaging. , 2005, Seminars in nuclear medicine.

[35]  R. Huesman,et al.  Kinetic Analysis of 18 F-Fluorodihydrorotenone as a Deposited Myocardial Flow Tracer : Comparison to 201 Tl , 2004 .