Canards in Stiction: On Solutions of a Friction Oscillator by Regularization

We study the solutions of a friction oscillator subject to stiction. The vector field of this discontinuous model does not follow the Filippov convention, and the concept of Filippov solution cannot be used. Furthermore, some Caratheodory solutions are unphysical. Therefore, we introduce the concept of stiction solutions: these are the Caratheodory solutions that are physically relevant, i.e., the ones that follow the stiction law. However, we find that some of the stiction solutions are forward nonunique in subregions of the slip onset. We call these solutions singular, in contrast to the regular stiction solutions that are forward unique. In order to further the understanding of the nonunique dynamics, we introduce a regularization of the model. This gives a singularly perturbed problem that captures the main features of the original discontinuous problem. We identify a repelling slow manifold that separates the forward slipping from the forward sticking solutions, leading to a high sensitivity to the i...

[1]  J. Callot,et al.  Chasse au canard , 1977 .

[2]  A. Akay Acoustics of friction. , 2002, The Journal of the Acoustical Society of America.

[3]  M. Krupa,et al.  Local analysis near a folded saddle-node singularity , 2010 .

[4]  Neil Fenichel Geometric singular perturbation theory for ordinary differential equations , 1979 .

[5]  John Guckenheimer,et al.  Bifurcations of Relaxation oscillations Near Folded saddles , 2005, Int. J. Bifurc. Chaos.

[6]  Karl Johan Åström,et al.  Friction generated limit cycles , 1996, Proceeding of the 1996 IEEE International Conference on Control Applications IEEE International Conference on Control Applications held together with IEEE International Symposium on Intelligent Contro.

[7]  K. K.,et al.  Stick-slip vibrations and chaos , 1990, Philosophical Transactions of the Royal Society of London. Series A: Physical and Engineering Sciences.

[8]  Jim Woodhouse,et al.  Are there reliable constitutive laws for dynamic friction? , 2015, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[9]  G. Stépán,et al.  On the periodic response of a harmonically excited dry friction oscillator , 2006 .

[10]  James D. Meiss,et al.  Differential dynamical systems , 2007, Mathematical modeling and computation.

[11]  P ? ? ? ? ? ? ? % ? ? ? ? , 1991 .

[12]  Christopher Jones,et al.  Geometric singular perturbation theory , 1995 .

[13]  P. Cox,et al.  Excitability in ramped systems: the compost-bomb instability , 2011, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[14]  J. Willis,et al.  Regimes of frictional sliding of a spring-block system , 2010 .

[15]  C. Kuehn Multiple Time Scale Dynamics , 2015 .

[16]  Gianpiero Rocca,et al.  Brake comfort – a review , 2009 .

[17]  Gábor Csernák,et al.  On the chaotic behaviour of a simple dry-friction oscillator , 2014, Math. Comput. Simul..

[18]  E. Rabinowicz The Nature of the Static and Kinetic Coefficients of Friction , 1951 .

[19]  Freddy Dumortier,et al.  Canard Cycles and Center Manifolds , 1996 .

[20]  Steven W. Shaw,et al.  On the dynamic response of a system with dry friction , 1986 .

[21]  Peter Szmolyan,et al.  Relaxation oscillations in R3 , 2004 .

[22]  U. Galvanetto,et al.  Dynamics of a Simple Damped Oscillator Undergoing Stick-Slip Vibrations , 1999 .

[23]  Neil Fenichel,et al.  Asymptotic stability with rate conditions for dynamical systems , 1974 .

[24]  Stephen John Hogan,et al.  On the Use of Blowup to Study Regularizations of Singularities of Piecewise Smooth Dynamical Systems in ℝ3 , 2014, SIAM J. Appl. Dyn. Syst..

[25]  I. D. Abrahams,et al.  Curve squeal of train wheels, Part 1: mathematical model for its generation , 2000 .

[26]  Edgar Knobloch,et al.  Transonic canards and stellar wind , 2017 .

[27]  Tere M. Seara,et al.  An Analytical Approach to Codimension-2 Sliding Bifurcations in the Dry-Friction Oscillator , 2010, SIAM J. Appl. Dyn. Syst..

[28]  Carlos Canudas de Wit,et al.  Friction Models and Friction Compensation , 1998, Eur. J. Control.

[29]  Petri T. Piiroinen,et al.  Two-parameter sliding bifurcations of periodic solutions in a dry-friction oscillator , 2008 .

[30]  T. K. Pratt,et al.  Non-linear analysis of stick/slip motion , 1981 .

[31]  Eusebius J. Doedel,et al.  Lecture Notes on Numerical Analysis of Nonlinear Equations , 2007 .

[32]  Aleksej F. Filippov,et al.  Differential Equations with Discontinuous Righthand Sides , 1988, Mathematics and Its Applications.

[33]  J. Cortés Discontinuous dynamical systems , 2008, IEEE Control Systems.

[34]  Jaume Llibre,et al.  Sliding Vector Fields via Slow--Fast Systems , 2008 .

[35]  Karl Popp,et al.  ON THE MODELLING OF FRICTION OSCILLATORS , 1998 .

[36]  Marco Antonio Teixeira,et al.  Generic Bifurcation of Sliding Vector Fields , 1993 .

[37]  Karl Popp,et al.  A Historical Review on Dry Friction and Stick-Slip Phenomena , 1998 .

[38]  Martin Wechselberger,et al.  Canards of Folded Saddle-Node Type I , 2015, SIAM J. Math. Anal..

[39]  Gábor Stépán,et al.  Sub-harmonic resonant solutions of a harmonically excited dry friction oscillator , 2007 .

[40]  M. Nakatani Conceptual and physical clarification of rate and state friction: Frictional sliding as a thermally activated rheology , 2001 .

[41]  P. Casini,et al.  Dynamics of friction oscillators excited by a moving base and/or driving force , 2001 .

[42]  Mario di Bernardo,et al.  Piecewise smooth dynamical systems , 2008, Scholarpedia.

[43]  P. Szmolyana,et al.  Relaxation oscillations in R 3 , 2004 .

[44]  Ettore Pennestrì,et al.  Review and comparison of dry friction force models , 2016 .

[45]  P. Szmolyan,et al.  Canards in R3 , 2001 .

[46]  M. Krupa,et al.  Relaxation Oscillation and Canard Explosion , 2001 .

[47]  K. U. Kristiansen,et al.  On the use of blow up to study regularizations of singularities of piecewise smooth dynamical systems in $\mathbb{R}^3$ , 2014, 1408.0675.

[48]  É. Benoît Chasse au canard , 1980 .

[49]  M. Oestreich,et al.  Bifurcation and stability analysis for a non-smooth friction oscillator , 1996 .

[50]  M. Wiercigroch,et al.  Hysteretic effects of dry friction: modelling and experimental studies , 2008, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.