Generalized Whittle–Matérn random field as a model of correlated fluctuations
暂无分享,去创建一个
[1] Sample path properties of fractional Riesz–Bessel field of variable order , 2008 .
[2] Y. Gliklikh. The Langevin Equation , 1997 .
[3] Riemann–Liouville and Weyl fractional oscillator processes , 2006 .
[4] G. Temple,et al. GENERALIZED FUNCTIONS, VOL. I , 1965 .
[5] K. Knight. Stable Non-Gaussian Random Processes Gennady Samorodnitsky and Murad S. Taqqu Chapman and Hall, 1994 , 1997, Econometric Theory.
[6] S. Kotz,et al. Analytic and Asymptotic Properties of Linnik′s Probability Densities .II. , 1995 .
[7] Fitting negative spatial covariances to geothermal field temperatures in Nea Kessani (Greece) , 2007 .
[8] Igor M. Sokolov,et al. Physics of Fractal Operators , 2003 .
[9] M. Zukovic,et al. SPARTAN RANDOM PROCESSES IN TIME SERIES MODELING , 2007, 0709.3418.
[10] Noel A. C. Cressie,et al. Statistics for Spatial Data: Cressie/Statistics , 1993 .
[11] Tilmann Gneiting,et al. Stochastic Models That Separate Fractal Dimension and the Hurst Effect , 2001, SIAM Rev..
[12] S. Bochner. Lectures on Fourier Integrals. (AM-42) , 1959 .
[13] M. Stein. Space–Time Covariance Functions , 2005 .
[14] H. Srivastava,et al. Theory and Applications of Fractional Differential Equations , 2006 .
[15] J. Klafter,et al. The restaurant at the end of the random walk: recent developments in the description of anomalous transport by fractional dynamics , 2004 .
[16] R. A. Silverman,et al. Wave Propagation in a Turbulent Medium , 1961 .
[17] D. F. Hays,et al. Table of Integrals, Series, and Products , 1966 .
[18] S. Krantz. Fractal geometry , 1989 .
[19] Robert Haining,et al. Statistics for spatial data: by Noel Cressie, 1991, John Wiley & Sons, New York, 900 p., ISBN 0-471-84336-9, US $89.95 , 1993 .
[20] P. Guttorp,et al. Studies in the history of probability and statistics XLIX On the Matérn correlation family , 2006 .
[21] A. Raftery,et al. Space-time modeling with long-memory dependence: assessing Ireland's wind-power resource. Technical report , 1987 .
[22] Katarzyna Sznajd-Weron,et al. Anomalous Diffusion From Basics to Applications , 1999 .
[23] Dionissios T. Hristopulos,et al. Analytic Properties and Covariance Functions for a New Class of Generalized Gibbs Random Fields , 2006, IEEE Transactions on Information Theory.
[24] Ming Li,et al. LOCALLY SELF-SIMILAR FRACTIONAL OSCILLATOR PROCESSES , 2007 .
[25] John A. Nelder,et al. A Simplex Method for Function Minimization , 1965, Comput. J..
[26] P. Whittle. ON STATIONARY PROCESSES IN THE PLANE , 1954 .
[27] D. Applebaum. Stable non-Gaussian random processes , 1995, The Mathematical Gazette.
[28] B. Matérn. Spatial variation : Stochastic models and their application to some problems in forest surveys and other sampling investigations , 1960 .
[29] Y. Almirantis,et al. Long- and Short-Range Correlations in Genome Organization , 1999 .
[30] J. R. Wallis,et al. An Approach to Statistical Spatial-Temporal Modeling of Meteorological Fields , 1994 .
[31] P. Welch. The use of fast Fourier transform for the estimation of power spectra: A method based on time averaging over short, modified periodograms , 1967 .
[32] R. V. Churchill,et al. Lectures on Fourier Integrals , 1959 .
[33] S. Samko. Hypersingular Integrals and Their Applications , 2001 .
[34] Thomas H. Jordan,et al. Stochastic Modeling of Seafloor Morphology: Inversion of Sea Beam Data for Second-Order Statistics , 1988 .
[35] R. Adler,et al. The Geometry of Random Fields , 1982 .
[36] D. Wilson,et al. Quasi-Wavelet Model of Von Kármán Spectrum of Turbulent Velocity Fluctuations , 2004 .
[37] D. Wilson,et al. Quasi-Wavelet Models of Turbulent Temperature Fluctuations , 2006 .
[38] L. Teo,et al. Gaussian fields and Gaussian sheets with generalized Cauchy covariance structure , 2008, 0807.0022.
[39] S. Jaffard,et al. Elliptic gaussian random processes , 1997 .
[40] Marc G. Genton,et al. Predictive spatio-temporal models for spatially sparse environmental data , 2005 .
[41] S. C. Lim,et al. Weyl and Riemann–Liouville multifractional Ornstein–Uhlenbeck processes , 2007 .
[42] Malgorzata Kotulska,et al. Natural fluctuations of an electropore show fractional Lévy stable motion. , 2007, Biophysical journal.
[43] James S. Harris,et al. Tables of integrals , 1998 .
[44] Multivariate Geostatistics , 2004 .
[45] Xiongzhi Chen,et al. Stat 598 Presentation on Nonseperable, Stationary Covariance Functions for Space-Time Data , 2010 .
[46] T. Kármán. Progress in the Statistical Theory of Turbulence , 1948 .
[47] R. Adler. The Geometry of Random Fields , 2009 .
[48] Jorge Mateu,et al. Quasi-arithmetic means of covariance functions with potential applications to space-time data , 2006, J. Multivar. Anal..
[49] Marc-Thorsten Hütt,et al. Genome Phylogeny Based on Short-Range Correlations in DNA Sequences , 2005, J. Comput. Biol..
[50] Klaus Mecke,et al. Statistical Physics and Spatial Statistics , 2000 .
[51] Covariance factorisation and abstract representation of generalised random fields , 2000, Bulletin of the Australian Mathematical Society.
[52] R. Hilfer. Applications Of Fractional Calculus In Physics , 2000 .
[53] M. Stein,et al. A Bayesian analysis of kriging , 1993 .
[54] Samuel Kotz,et al. Multivariate T-Distributions and Their Applications , 2004 .
[55] F. Massey. The Kolmogorov-Smirnov Test for Goodness of Fit , 1951 .
[56] J. Chilès,et al. Geostatistics: Modeling Spatial Uncertainty , 1999 .
[57] T. Gneiting. Nonseparable, Stationary Covariance Functions for Space–Time Data , 2002 .
[58] L. Pitt,et al. On the sharp Markov property for Gaussian random fields and spectral synthesis in spaces of Bessel potentials , 2003 .
[59] K. Mardia,et al. Consistency of Procrustes Estimators , 1997 .
[60] 곽순섭,et al. Generalized Functions , 2006, Theoretical and Mathematical Physics.
[61] B. Minasny,et al. The Matérn function as a general model for soil variograms , 2005 .
[62] J. Klafter,et al. The random walk's guide to anomalous diffusion: a fractional dynamics approach , 2000 .
[63] S. SIAMJ.. SPARTAN GIBBS RANDOM FIELD MODELS FOR GEOSTATISTICAL APPLICATIONS∗ , 2003 .
[64] John T. Kent,et al. Estimating the Fractal Dimension of a Locally Self-similar Gaussian Process by using Increments , 1997 .
[65] Dietrich Stoyan,et al. Statistical Physics and Spatial Statistics: The Art Of Analyzing And Modeling Spatial Structures And Pattern Formation , 2010 .
[66] Roger Woodard,et al. Interpolation of Spatial Data: Some Theory for Kriging , 1999, Technometrics.
[67] I. P. Shkarofsky,et al. Generalized turbulence space-correlation and wave-number spectrum-function pairs , 1968 .
[68] Noel A Cressie,et al. Statistics for Spatial Data, Revised Edition. , 1994 .
[69] A. Walden,et al. Spectral analysis for physical applications : multitaper and conventional univariate techniques , 1996 .
[70] L. Goldman,et al. Airway pressure alters wavelet fractal dynamics and short-range dependence of respiratory variability , 2008, Respiratory Physiology & Neurobiology.