Chemically induced transformation of chemical vapour deposition grown bilayer graphene into fluorinated single-layer diamond

[1]  P. Puech,et al.  Low temperature, pressureless sp2 to sp3 transformation of ultrathin, crystalline carbon films , 2019, Carbon.

[2]  E. Riedo,et al.  Ultrahard carbon film from epitaxial two-layer graphene , 2018, Nature Nanotechnology.

[3]  J. Kong,et al.  Raman evidence for pressure-induced formation of diamondene , 2017, Nature Communications.

[4]  K. Novoselov,et al.  Hydrogenation of Graphene by Reaction at High Pressure and High Temperature. , 2015, ACS nano.

[5]  L. Chernozatonskii,et al.  Phase diagram of quasi-two-dimensional carbon, from graphene to diamond. , 2014, Nano letters.

[6]  R. Ruoff,et al.  Conversion of multilayer graphene into continuous ultrathin sp3-bonded carbon films on metal surfaces , 2013, Scientific Reports.

[7]  E. Grayfer,et al.  Synthesis, properties, and dispersion of few-layer graphene fluoride. , 2013, Chemistry, an Asian journal.

[8]  F. Abild‐Pedersen,et al.  Interlayer carbon bond formation induced by hydrogen adsorption in few-layer supported graphene. , 2013, Physical review letters.

[9]  M. Pumera,et al.  Graphane and hydrogenated graphene. , 2013, Chemical Society reviews.

[10]  L. Ley,et al.  Work function and electron affinity of the fluorine-terminated (100) diamond surface , 2013 .

[11]  F. Withers,et al.  Tuning the transport gap of functionalized graphene via electron beam irradiation , 2013 .

[12]  A. Okotrub,et al.  Anisotropy of chemical bonding in semifluorinated graphite C2F revealed with angle-resolved X-ray absorption spectroscopy. , 2013, ACS Nano.

[13]  R. Piner,et al.  Growth mechanism and controlled synthesis of AB-stacked bilayer graphene on Cu-Ni alloy foils. , 2012, ACS nano.

[14]  X. Duan,et al.  High-yield chemical vapor deposition growth of high-quality large-area AB-stacked bilayer graphene. , 2012, ACS nano.

[15]  F. Abild‐Pedersen,et al.  Reversible graphene-metal contact through hydrogenation , 2012 .

[16]  G. Tian,et al.  Simulation of the Structure and Properties of Room Temperature Molten Salts 1-Ethyl-3-Methyl-Imidazolium Chloride/Chloroaluminate , 2012 .

[17]  J. Robinson,et al.  Tuning the electronic properties of graphene by hydrogenation in a plasma enhanced chemical vapor deposition reactor , 2011 .

[18]  D. Claves Spectroscopic study of fluorinated carbon nanostructures , 2011 .

[19]  Thomas H. Bointon,et al.  Nanopatterning of fluorinated graphene by electron beam irradiation. , 2011, Nano letters.

[20]  B. Neves,et al.  Room‐Temperature Compression‐Induced Diamondization of Few‐Layer Graphene , 2011, Advanced materials.

[21]  V. Shenoy,et al.  Tunable dielectric properties of transition metal dichalcogenides. , 2011, ACS nano.

[22]  A. Bostwick,et al.  Fluorographene: a wide bandgap semiconductor with ultraviolet luminescence. , 2011, ACS nano.

[23]  Ashutosh Kumar Singh,et al.  Patterning nanoroads and quantum dots on fluorinated graphene , 2010, 1012.4217.

[24]  Lei Liu,et al.  Large‐Scale Synthesis of Bi‐layer Graphene in Strongly Coupled Stacking Order , 2010, 1012.0701.

[25]  J. Robinson,et al.  Properties of fluorinated graphene films. , 2010, Nano letters.

[26]  V. Kravets,et al.  Fluorographene: a two-dimensional counterpart of Teflon. , 2010, Small.

[27]  V. Kravets,et al.  Spectroscopic ellipsometry of graphene and an exciton-shifted van Hove peak in absorption , 2010, Physical Review B.

[28]  L. Chernozatonskii,et al.  Diamond-like C2H nanolayer, diamane: Simulation of the structure and properties , 2009, 1002.0634.

[29]  T. Gemming,et al.  Structural transformations in graphene studied with high spatial and temporal resolution. , 2009, Nature Nanotechnology.

[30]  K. Novoselov,et al.  Control of Graphene's Properties by Reversible Hydrogenation: Evidence for Graphane , 2008, Science.

[31]  M. Payne,et al.  Theory of core-hole effects in 1s core-level spectroscopy of the first-row elements , 2008 .

[32]  Ju-Wan Kim,et al.  An XPS Study of Oxyfluorinated Multiwalled Carbon Nano Tubes , 2007 .

[33]  Stefan Grimme,et al.  Semiempirical GGA‐type density functional constructed with a long‐range dispersion correction , 2006, J. Comput. Chem..

[34]  G. Kresse,et al.  Implementation and performance of the frequency-dependent GW method within the PAW framework , 2006 .

[35]  M. Biesinger,et al.  New interpretations of XPS spectra of nickel metal and oxides , 2006 .

[36]  K. Seki,et al.  UPS study of VUV-photodegradation of polytetrafluoroethylene (PTFE) ultrathin film by using synchrotron radiation , 2005 .

[37]  J. Robertson,et al.  Raman spectroscopy of amorphous, nanostructured, diamond–like carbon, and nanodiamond , 2004, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[38]  Vinay Gupta Comments on “NanoTeflons: Structure and EELS Characterization of Fluorinated Carbon Nanotubes and Nanofibers” , 2004 .

[39]  K. An,et al.  X-ray photoemission spectroscopy study of fluorinated single-walled carbon nanotubes , 2002 .

[40]  M. Terrones,et al.  NanoTeflons: Structure and EELS Characterization of Fluorinated Carbon Nanotubes and Nanofibers , 2002 .

[41]  B. Delley From molecules to solids with the DMol3 approach , 2000 .

[42]  G. Kresse,et al.  From ultrasoft pseudopotentials to the projector augmented-wave method , 1999 .

[43]  I. Asanov,et al.  X-ray photoelectron study of fluorinated graphite intercalation compounds , 1998 .

[44]  Steven G. Louie,et al.  Electron-Hole Excitations in Semiconductors and Insulators , 1998 .

[45]  Stefan Albrecht Lucia Reining Rodolfo Del Sole Giovanni Onida Ab Initio Calculation of Excitonic Effects in the Optical Spectra of Semiconductors , 1998, cond-mat/9803194.

[46]  S. Asher,et al.  uv Studies of Tetrahedral Bonding in Diamondlike Amorphous Carbon , 1997 .

[47]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[48]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[49]  G. Kresse,et al.  Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set , 1996 .

[50]  Hafner,et al.  Ab initio molecular dynamics for open-shell transition metals. , 1993, Physical review. B, Condensed matter.

[51]  R. E. Shroder,et al.  Raman scattering characterization of carbon bonding in diamond and diamondlike thin films , 1988 .

[52]  Louie,et al.  Electron correlation in semiconductors and insulators: Band gaps and quasiparticle energies. , 1986, Physical review. B, Condensed matter.

[53]  N. Watanabe Characteristics and applications of graphite fluoride , 1981 .

[54]  A. Bianconi,et al.  Photoemission studies of graphite high-energy conduction-band and valence-band states using soft-x-ray synchrotron radiation excitation , 1977 .

[55]  H. Monkhorst,et al.  SPECIAL POINTS FOR BRILLOUIN-ZONE INTEGRATIONS , 1976 .

[56]  F. Granozio Films , 1974, Études.

[57]  L. Hedin NEW METHOD FOR CALCULATING THE ONE-PARTICLE GREEN'S FUNCTION WITH APPLICATION TO THE ELECTRON-GAS PROBLEM , 1965 .

[58]  H. Bethe,et al.  A Relativistic equation for bound state problems , 1951 .

[59]  Erie H. Morales,et al.  Atomic and Electronic Structure of the , 2012 .

[60]  T. Fukunaga,et al.  On the so-called “semi-ionic” C–F bond character in fluorine–GIC , 2004 .

[61]  B. Pate The diamond surface: Atomic and electronic structure , 1984 .

[62]  T. Fleisch,et al.  Reduction of copper oxides by UV radiation and atomic hydrogen studied by XPS , 1982 .