Text-based Knowledge Acquisition for Ontology Engineering

This paper describes an approach towards ontology engineering that makes use of text technology for extracting relevant semantic relations from document collections. A short description of corpus characteristics and examples of statistical text analysis results show how input for ontology design can be generated automatically. The Topic Map standard is used as an example for standardised representation of ontologies and a toolset for generating raw Topic Maps is described. Finally practical applications of this approach are described and areas of future research in the refinement of ontology generation are described.

[1]  Steffen Staab,et al.  Ontology Learning for the Semantic Web , 2002, IEEE Intell. Syst..

[2]  Stefan Decker,et al.  Creating Semantic Web Contents with Protégé-2000 , 2001, IEEE Intell. Syst..

[3]  Christian Wolff,et al.  An Infrastructure for Corpus-Based Monolingual Dictionaries , 2000 .

[4]  Christian Wolff,et al.  Topic Map Generation Using Text Mining , 2002, J. Univers. Comput. Sci..

[5]  Steven R. Newcomb,et al.  XML Topic Maps: Finding Aids for the Web , 2001, IEEE Multim..

[6]  Christian Wolff,et al.  Aiding Web Searches by Statistical Classification Tools , 2000, ISI.

[7]  Henry M. Kim,et al.  Predicting how ontologies for the semantic web will evolve , 2002, CACM.

[8]  Michael Gruninger,et al.  ONTOLOGY Applications and Design , 2002 .

[9]  Dongsong Zhang,et al.  ROD - toward rapid ontology development for underdeveloped domains , 2002, Proceedings of the 35th Annual Hawaii International Conference on System Sciences.

[10]  Christian Wolff,et al.  Information Extraction from Text Corpora: Using Filters on Collocation Sets , 2002, LREC.

[11]  C. Mair,et al.  Using large corpora , 1997 .

[12]  Frank Smadja,et al.  Retrieving Collocations from Text: Xtract , 1993, CL.

[13]  David Harel,et al.  Drawing graphs nicely using simulated annealing , 1996, TOGS.

[14]  Christian Wolff,et al.  Learning Relations Using Collocations , 2001, Workshop on Ontology Learning.

[15]  Lothar Lemnitzer,et al.  Komplexe lexikalische Einheiten in Text und Lexikon , 1997, GLDV-Jahrestagung.

[16]  Ludwig Nastansky,et al.  K-discovery: using topic maps to identify distributed knowledge structures in groupware-based organizational memories , 2002, Proceedings of the 35th Annual Hawaii International Conference on System Sciences.

[17]  Bruce R. Schatz,et al.  The Interspace: Concept Navigation Across Distributed Communities , 2002, Computer.