Knowledge Creation and Integration: Creative Space and Creative Environments

This paper presents first a review of recent advancements in the theory of knowledge creation, starting with Shinayakana Systems Approach of Sawaragi and Nakamori and The Knowledge Creating Company with SECI Spiral Process of Nonaka and Takeuchi. Later, a method called Creative Space is proposed for integrating diverse approaches to knowledge creation. This method is based on SECI Spiral Process, I^5 System of Nakamori and especially on Rational Theory of Intuition of Wierzbicki. Conclusions concerning comparison and improvements of various methods of knowledge creation and applications to the construction of specific creative environments are outlined.

[1]  Andrzej P. Wierzbicki,et al.  Aspiration Based Decision Support Systems , 1989 .

[2]  H. Bergson,et al.  Introduction to Metaphysics , 1942 .

[3]  M. Polanyi Chapter 7 – The Tacit Dimension , 1997 .

[4]  J. Lopreato,et al.  General system theory : foundations, development, applications , 1970 .

[5]  R. Stickgold,et al.  Practice with Sleep Makes Perfect Sleep-Dependent Motor Skill Learning , 2002, Neuron.

[6]  Hubert L. Dreyfus,et al.  Mind over Machine: The Power of Human Intuition and Expertise in the Era of the Computer , 1987, IEEE Expert.

[7]  J. Fodor The elm and the expert : mentalese and its semantics , 1995 .

[8]  J. Kacprzyk,et al.  Incomplete Information: Rough Set Analysis , 1997 .

[9]  Andrzej P. Wierzbicki,et al.  On the Role of Intuition in Decision Making and Some Ways of Multicriteria Aid of Intuition , 1997 .

[10]  T. Kuhn,et al.  The Structure of Scientific Revolutions. , 1964 .

[11]  John R. Beaumont,et al.  Control and Coordination in Hierarchical Systems , 1981 .

[12]  M. Crossan The Knowledge-Creating Company: How Japanese Companies Create the Dynamics of Innovation , 1996 .

[13]  Janusz Zalewski,et al.  Rough sets: Theoretical aspects of reasoning about data , 1996 .

[14]  Z. Pawlak,et al.  Rough set approach to multi-attribute decision analysis , 1994 .

[15]  James Gleick Chaos: Making a New Science , 1987 .

[16]  I. Nonaka,et al.  SECI, Ba and Leadership: a Unified Model of Dynamic Knowledge Creation , 2000 .

[17]  John R. Searle,et al.  The Rediscovery of the Mind , 1995, Artif. Intell..

[18]  A. Wierzbicki,et al.  Modelling Knowledge in Global Information Networks 3 , 2004 .

[19]  Susan Gasson,et al.  The management of distributed organizational knowledge , 2004, 37th Annual Hawaii International Conference on System Sciences, 2004. Proceedings of the.

[20]  Z. Pawlak Rough Sets: Theoretical Aspects of Reasoning about Data , 1991 .

[21]  S. P. Springer,et al.  Left brain, right brain , 1981 .

[22]  野中 郁次郎,et al.  The Knowledge-Creating Company: How , 1995 .

[23]  H. Simon,et al.  Models of Man. , 1957 .

[24]  M. Heidegger,et al.  Der Satz vom Grund. , 1997 .

[25]  W. Quine The two dogmas of empiricism , 1951 .

[26]  Karl Raimund Sir Popper,et al.  Realism and the aim of science , 1983 .

[27]  H. Gardner The mind's new science: a history of the cognitive revolution , 1985 .

[28]  北陸先端科学技術大学院大学 Technology creation based on knowledge science : theory and practice : proceedings , 2004 .

[29]  Fernand Braudel,et al.  Civilisation matérielle, économie et capitalisme, XVe-XVIIIe siècle , 1981 .

[30]  L. Wittgenstein Tractatus Logico-Philosophicus , 2021, Nordic Wittgenstein Review.

[31]  Marek Makowski,et al.  Model-Based Decision Support Methodology with Environmental Applications , 2000 .

[32]  Stanley Goldberg,et al.  Discovering: Inventing and Solving Problems at the Frontiers of Scientific Knowledge , 1997 .