Chemical analysis using low-field magnetic resonance

Abstract The composition of complex mixtures is often analyzed using high-field magnetic resonance (MR) spectroscopy, which typically relies upon large and expensive superconducting magnets. Here we introduce three methods based on low-field MR measurements which can be performed using inexpensive permanent magnets and are therefore advantageous for low-cost and portable applications. Firstly, relaxation and diffusion are known to be intimately related to molecular sizes and these relations have been formulated as scaling laws for mixtures of hydrocarbons. These scaling laws can be used for non-invasive determination of molecular size distributions. Secondly, we show that low-field J-coupling measurements can be used to identify different molecular moieties. Finally, we discuss low-field MR hardware and the development of a non-resonant sensor for improved Nuclear Quadrupole Resonance (NQR) spectroscopy. In summary, we show that low-field MR has the potential to be a powerful new tool for chemical analysis.

[1]  W. Mattice,et al.  Diffusion of liquid n-alkanes: Free-volume and density effects , 1998 .

[2]  D G Cory,et al.  An ultra-broadband low-frequency magnetic resonance system. , 2014, Journal of magnetic resonance.

[3]  Yi-Qiao Song,et al.  Scaling laws for diffusion coefficients in mixtures of alkanes. , 2005, Physical review letters.

[4]  Jill S. Buckley,et al.  Rapid and accurate SARA analysis of medium gravity crude oils , 2002 .

[5]  P. Gennes Reptation of a Polymer Chain in the Presence of Fixed Obstacles , 1971 .

[6]  Robert Matthews,et al.  Remote sensing by nuclear quadrupole resonance , 2001, IEEE Trans. Geosci. Remote. Sens..

[7]  Fabio C Gozzo,et al.  Correction: Corrigendum: αB-crystallin interacts with and prevents stress-activated proteolysis of focal adhesion kinase by calpain in cardiomyocytes , 2015, Nature Communications.

[8]  G. C. Borgia,et al.  Uniform-penalty inversion of multiexponential decay data. , 1998, Journal of magnetic resonance.

[9]  S. Provencher CONTIN: A general purpose constrained regularization program for inverting noisy linear algebraic and integral equations , 1984 .

[10]  J. E. Tanner,et al.  Spin diffusion measurements : spin echoes in the presence of a time-dependent field gradient , 1965 .

[11]  Joseph B. Lambert,et al.  Nuclear magnetic resonance spectroscopy : an introduction to principles, applications, and experimental methods , 2004 .

[12]  R. Henkelman,et al.  Quantitative Two‐Dimensional time Correlation Relaxometry , 1991, Magnetic resonance in medicine.

[13]  R. C. Ayers,et al.  Environmental Impacts of Synthetic Based Drilling Fluids , 2000 .

[14]  Soumyajit Mandal,et al.  Chirped CPMG for well-logging NMR applications. , 2014, Journal of magnetic resonance.

[15]  B. K. Agarwal,et al.  X-Ray Spectroscopy: An Introduction , 1979 .

[16]  Martin Burghoff,et al.  NMR at very low fields. , 2010, Magnetic resonance imaging.

[17]  G. Bodenhausen,et al.  Principles of nuclear magnetic resonance in one and two dimensions , 1987 .

[18]  J. Watson,et al.  Introduction to Mass Spectrometry: Instrumentation, Applications, and Strategies for Data Interpretation , 2007 .

[19]  Guannan Zhang,et al.  Ultrafast multidimensional Laplace NMR for a rapid and sensitive chemical analysis , 2015, Nature Communications.

[20]  S. Edwards,et al.  The Theory of Polymer Dynamics , 1986 .

[21]  D. Freed Dependence on chain length of NMR relaxation times in mixtures of alkanes. , 2007, The Journal of chemical physics.

[22]  L. D. Hall,et al.  Imaging Multiexponential Relaxation in the (y, LogeT1) Plane, with Application to Clay Filtration in Rock Cores , 1995 .

[23]  Y. Parmet,et al.  Laplace Inversion of Low-Resolution NMR Relaxometry Data Using Sparse Representation Methods , 2013, Concepts in magnetic resonance. Part A, Bridging education and research.

[24]  Bernhard Blümich,et al.  NMR at low magnetic fields , 2009 .

[25]  A. Einstein Über die von der molekularkinetischen Theorie der Wärme geforderte Bewegung von in ruhenden Flüssigkeiten suspendierten Teilchen [AdP 17, 549 (1905)] , 2005, Annalen der Physik.

[26]  Peter John Weinheber,et al.  Using the Continuous NMR Fluid Properties Scan To Optimize Sampling With Wireline Formation Testers , 2008 .

[27]  S. Provencher A constrained regularization method for inverting data represented by linear algebraic or integral equations , 1982 .

[28]  J. Ferry Viscoelastic properties of polymers , 1961 .

[29]  R. Bachus,et al.  Molecular weight and temperature dependence of self-diffusion coefficients in polyethylene and polystyrene melts investigated using a modified n.m.r. field-gradient technique , 1983 .

[30]  D. D. Griffin,et al.  Novel NMR apparatus for investigating an external sample , 1992 .

[31]  E. Purcell,et al.  Relaxation Effects in Nuclear Magnetic Resonance Absorption , 1948 .

[32]  B. Schrader Infrared and Raman Spectroscopy , 1995 .

[33]  D. E. Maxwell,et al.  Spin Echo Measurements of Nuclear Spin Coupling in Molecules , 1952 .

[34]  S. Mandal,et al.  Two-dimensional NQR using ultra-broadband electronics. , 2014, Journal of magnetic resonance.

[35]  H. Lüdemann,et al.  Temperature and Pressure Dependence of Self Diffusion in Long Liquid n‐Alkanes , 1991 .

[36]  B. K. Agarwal,et al.  X-Ray Spectroscopy , 1979 .

[37]  Randy D. Down,et al.  Environmental instrumentation and analysis handbook , 2004 .

[38]  Cheng Sun,et al.  Separation and determination of oligomers and homologues of aliphatic alcohol ethoxylates in textile lubricants and lubricant emulsion by high-performance liquid chromatography , 1997 .

[39]  L Venkataramanan,et al.  T(1)--T(2) correlation spectra obtained using a fast two-dimensional Laplace inversion. , 2002, Journal of magnetic resonance.

[40]  Robert McDermott,et al.  Liquid-State NMR and Scalar Couplings in Microtesla Magnetic Fields , 2002, Science.

[41]  Walter H. Moos,et al.  Comparison of the proteolytic susceptibilities of homologous L‐amino acid, D‐amino acid, and N‐substituted glycine peptide and peptoid oligomers , 1995 .

[42]  A. Einstein On the movement of small particles suspended in a stationary liquid demanded by the molecular-kinetic theory of heart , 1905 .

[43]  Soumyajit Mandal,et al.  Broadband CPMG sequence with short composite refocusing pulses. , 2013, Journal of magnetic resonance.

[44]  E. Anderson,et al.  Diffusion in Ethylene Polymers. IV , 1959 .

[45]  C. Slichter Principles of magnetic resonance , 1963 .

[46]  Jing-Huei Lee,et al.  Two-dimensional inverse Laplace transform NMR: altered relaxation times allow detection of exchange correlation , 1993 .

[47]  S. Mandal,et al.  Heteronuclear J-coupling measurements in grossly inhomogeneous magnetic fields. , 2015, Journal of magnetic resonance.

[48]  Pabitra N. Sen,et al.  Time-dependent diffusion coefficient as a probe of geometry , 2004 .

[49]  P. Jandera Simultaneous optimisation of gradient time, gradient shape and initial composition of the mobile phase in the high-performance liquid chromatography of homologous and oligomeric series , 1999 .

[50]  R. K. Shenoy,et al.  Two-dimensional nmr time evolution correlation spectroscopy in wet lysozyme , 1981 .

[51]  R. Freeman,et al.  An excitation sequence which discriminates between direct and long-range CH coupling , 1984 .

[52]  Soumyajit Mandal,et al.  Axis-matching excitation pulses for CPMG-like sequences in inhomogeneous fields. , 2013, Journal of magnetic resonance.