New SAV-pressure correction methods for the Navier-Stokes equations: stability and error analysis

We construct new first- and second-order pressure correction schemes using the scalar auxiliary variable (SAV) approach for the Navier-Stokes equations. These schemes are linear, decoupled and only require a sequence of solving Poisson type equations at each time step. Furthermore, they are unconditionally energy stable. We also establish rigorous error estimates for the velocity and pressure approximation of the first-order scheme without any condition on the time step.

[1]  Jie Shen,et al.  On error estimates of the projection methods for the Navier-Stokes equations: Second-order schemes , 1996, Math. Comput..

[2]  Jie Shen On error estimates of projection methods for Navier-Stokes equations: first-order schemes , 1992 .

[3]  R. Rannacher,et al.  Finite-element approximations of the nonstationary Navier-Stokes problem. Part IV: error estimates for second-order time discretization , 1990 .

[4]  Jie Shen,et al.  An overview of projection methods for incompressible flows , 2006 .

[5]  Hongxing Rui,et al.  Superconvergence of Characteristics Marker and Cell Scheme for the Navier-Stokes Equations on Nonuniform Grids , 2018, SIAM J. Numer. Anal..

[6]  Jie Shen,et al.  Energy stability and convergence of SAV block-centered finite difference method for gradient flows , 2018, Math. Comput..

[7]  Jean-Luc Guermond,et al.  Un résultat de convergence d'ordre deux en temps pour l'approximation des équations de Navier-Stokes par une technique de projection incrémentale , 1999 .

[8]  N. N. Yanenko,et al.  The Method of Fractional Steps , 1971 .

[9]  R. Temam Navier-Stokes Equations and Nonlinear Functional Analysis , 1987 .

[10]  Jian‐Guo Liu,et al.  Projection method I: convergence and numerical boundary layers , 1995 .

[11]  Jie Shen,et al.  Stability and convergence analysis of rotational velocity correction methods for the Navier–Stokes equations , 2019, Advances in Computational Mathematics.

[12]  Béatrice Rivière,et al.  Subgrid Stabilized Defect Correction Methods for the Navier-Stokes Equations , 2006, SIAM J. Numer. Anal..

[13]  R. Temam Sur l'approximation de la solution des équations de Navier-Stokes par la méthode des pas fractionnaires (II) , 1969 .

[14]  Rolf Rannacher,et al.  On the finite element approximation of the nonstationary Navier-Stokes problem , 1980 .

[15]  U. Ghia,et al.  High-Re solutions for incompressible flow using the Navier-Stokes equations and a multigrid method , 1982 .

[16]  Florentina Tone,et al.  Error analysis for a second order scheme for the Navier-Stokes equations , 2004 .

[17]  R. Glowinski Finite element methods for incompressible viscous flow , 2003 .

[18]  A. Chorin Numerical solution of the Navier-Stokes equations , 1968 .

[19]  R. Temam,et al.  Navier-Stokes equations: theory and numerical analysis: R. Teman North-Holland, Amsterdam and New York. 1977. 454 pp. US $45.00 , 1978 .

[20]  J. Kan A second-order accurate pressure correction scheme for viscous incompressible flow , 1986 .

[21]  Buyang Li,et al.  Energy-Decaying Extrapolated RK-SAV Methods for the Allen-Cahn and Cahn-Hilliard Equations , 2019, SIAM J. Sci. Comput..

[22]  Leo G. Rebholz,et al.  The stabilized extrapolated trapezoidal finite-element method for the Navier–Stokes equations , 2009 .

[23]  Jean E. Roberts,et al.  Mixed and hybrid finite element methods , 1987 .

[24]  Jie Shen,et al.  Error analysis of the SAV-MAC scheme for the Navier-Stokes equations , 2019, SIAM J. Numer. Anal..

[25]  Jonas Schmitt,et al.  The Method Of Fractional Steps The Solution Of Problems Of Mathematical Physics In Several Variables , 2016 .

[26]  Jie Shen,et al.  A New Class of Efficient and Robust Energy Stable Schemes for Gradient Flows , 2017, SIAM Rev..

[27]  Suchuan Dong,et al.  Numerical approximation of incompressible Navier-Stokes equations based on an auxiliary energy variable , 2018, J. Comput. Phys..

[28]  Jie Shen,et al.  Velocity-Correction Projection Methods for Incompressible Flows , 2003, SIAM J. Numer. Anal..

[29]  R. Rannacher,et al.  Finite element approximation of the nonstationary Navier-Stokes problem. I : Regularity of solutions and second-order error estimates for spatial discretization , 1982 .

[30]  P. Raviart,et al.  Finite Element Approximation of the Navier-Stokes Equations , 1979 .

[31]  R. Temam Sur l'approximation de la solution des équations de Navier-Stokes par la méthode des pas fractionnaires (I) , 1969 .

[32]  Jean-Luc Guermond,et al.  High-Order Adaptive Time Stepping for the Incompressible Navier-Stokes Equations , 2019, SIAM J. Sci. Comput..

[33]  Hantaek Bae Navier-Stokes equations , 1992 .

[34]  Leo G. Rebholz,et al.  Efficient nonlinear iteration schemes based on algebraic splitting for the incompressible Navier-Stokes equations , 2019, Math. Comput..

[35]  Jie Shen,et al.  Convergence and Error Analysis for the Scalar Auxiliary Variable (SAV) Schemes to Gradient Flows , 2018, SIAM J. Numer. Anal..

[36]  Barry Lee,et al.  Finite elements and fast iterative solvers: with applications in incompressible fluid dynamics , 2006, Math. Comput..

[37]  Weiwei Sun,et al.  Stability and Convergence of the Crank-Nicolson/Adams-Bashforth scheme for the Time-Dependent Navier-Stokes Equations , 2007, SIAM J. Numer. Anal..

[38]  Jiang Yang,et al.  The scalar auxiliary variable (SAV) approach for gradient flows , 2018, J. Comput. Phys..

[39]  Jie Shen Long time stability and convergence for fully discrete nonlinear galerkin methods , 1990 .

[40]  Jie Shen,et al.  On the error estimates for the rotational pressure-correction projection methods , 2003, Math. Comput..

[41]  Leo G. Rebholz,et al.  Improved Accuracy in Algebraic Splitting Methods for Navier-Stokes Equations , 2017, SIAM J. Sci. Comput..

[42]  M. Marion,et al.  Nonlinear Galerkin methods and mixed finite elements: two-grid algorithms for the Navier-Stokes equations , 1994 .

[43]  Cheng Wang,et al.  Convergence of gauge method for incompressible flow , 2000, Math. Comput..