Biosensors for analytical microsystems

A modular concept for analytical microsystems with separately developed and optimized components is proposed, where parts can be easily substituted. Since the system should be universal hybrid integration is preferred over monolithic fabrication technology.The biosensor as an essential part of an analytical microsystem is commonly restricted in its functional stability due to the lifetime of the biological component and the adhesion of the sensitive layer at the transducer. Optimum design requirements have to be derived from the particular system to be measured. For the optimization of the (bio)sensor the polymer matrix carrying or covering the enzyme has been modified, the transducer design itself has been varied, and enzymes have been coupled.

[1]  A. Turner,et al.  Ferrocene-mediated enzyme electrode for amperometric determination of glucose. , 1984, Analytical chemistry.

[2]  M. Senda,et al.  Amperometric fructose sensor based on direct bioelectrocatalysis , 1991 .

[3]  Frieder W. Scheller,et al.  Enzyme Electrodes Using Bioelectrocatalytic Reduction of Hydrogen Peroxide , 1990 .

[4]  D. J. Harrison,et al.  Capillary electrophoresis and sample injection systems integrated on a planar glass chip , 1992 .

[5]  Gerald Urban,et al.  Miniaturized multi-enzyme biosensors integrated with pH sensors on flexible polymer carriers for in vivo applications , 1992 .

[6]  G. S. Wilson,et al.  Biosensors : fundamentals and applications , 1987 .

[7]  David C. Loveday,et al.  Analytical applications of the electrochemical quartz crystal microbalance , 1992 .

[8]  B. Hoffmann,et al.  Polyurethane Enzyme Membranes for Chip Biosensors , 1989 .

[9]  Albert van den Berg,et al.  Modification of ISFESTs by covalent anchoring of poly(hydroxyethyl methacrylate) hydrogel. Introduction of a thermodynamically defined semiconductor-sensing membrane interface , 1990 .

[10]  W. Schuhmann,et al.  Polypyrrole, a new possibility for covalent binding of oxidoreductases to electrode surfaces as a base for stable biosensors , 1990 .

[11]  Ulla Wollenberger,et al.  Interdigitated array microelectrodes for the determination of enzyme activities , 1994 .

[12]  R. Hintsche,et al.  Analytical Aspects of Internal Signal Processing in Biosensors , 1990, Annals of the New York Academy of Sciences.

[13]  Jun Kimura,et al.  An integrated SOS/FET multi-biosensor , 1986 .

[14]  Lo Gorton,et al.  Amperometric biosensors based on an apparent direct electron transfer between electrodes and immobilized peroxidases. Plenary lecture , 1992 .

[15]  Adam Heller,et al.  Direct electrical communication between chemically modified enzymes and metal electrodes. 2. Methods for bonding electron-transfer relays to glucose oxidase and D-amino-acid oxidase , 1988 .

[16]  Fumio Mizutani,et al.  An enzyme electrode forl-lactate with a chemically-amplified response , 1985 .

[17]  L. Gorton,et al.  An amperometric glucose electrode based on carbon paste, chemically modified with glucose dehydrogenase, nicotinamide adenine dinucleotide, and a phenoxazine mediator, coated with a poly(ester sulfonic acid) cation exchanger , 1991 .

[18]  Isao Karube,et al.  Disposable amperometric CO2 sensor employing bacteria and a miniature oxygen electrode , 1991 .

[19]  R. Murray,et al.  Interdigitated Array Electrode Diffusion Measurements in Donor/Acceptor Solutions in Polyether Electrolyte Solvents , 1991 .

[20]  Allen J. Bard,et al.  Digital Simulation of the Measured Electrochemical Response of Reversible Redox Couples at Microelectrode Arrays: Consequences Arising from Closely Spaced Ultramicroelectrodes , 1986 .

[21]  P. Bergveld,et al.  ISFET based enzyme sensors. , 1987, Biosensors.

[22]  W. Schuhmann,et al.  Non-leaking amperometric biosensors based on high-molecular ferrocene derivatives. , 1993, Biosensors & bioelectronics.

[23]  H. Hill,et al.  Direct un-mediated electrochemistry of the enzyme P-cresolmethylhydroxylase , 1989 .

[24]  Willy M. C. Sansen,et al.  Biosensors: Microelectrochemical Devices , 1992 .

[25]  H. Müller,et al.  Photolithographically patterned enzyme membranes for the detection of pesticides and copper(II) based on enzyme inhibition , 1993 .

[26]  H. Hill,et al.  Amperometric enzyme electrodes , 1986 .

[27]  J. W. Parce,et al.  Detection of cell-affecting agents with a silicon biosensor. , 1989, Science.

[28]  W. Heineman,et al.  Small-volume voltammetric detection of 4-aminophenol with interdigitated array electrodes and its application to electrochemical enzyme immunoassay. , 1993, Analytical chemistry.

[29]  F. Scheller,et al.  Augmentation of enzyme electrode sensitivity using biocatalytic preconcentration , 1991 .

[30]  R. Hintsche,et al.  Plasma-Polymerized Thin Films for Enzyme Immobilization in Biosensors , 1989 .

[31]  Koichi Aoki,et al.  Theory of ultramicroelectrodes , 1993 .

[32]  D. Bélanger,et al.  Fast and easy preparation of an amperometric glucose biosensor , 1988 .

[33]  Toshihide Kuriyama,et al.  A lift-off method for patterning enzyme-immobilized membranes in multi-biosensors , 1988 .

[34]  Hisao Tabei,et al.  Electrochemical behavior of reversible redox species at interdigitated array electrodes with different geometries: consideration of redox cycling and collection efficiency , 1990 .

[35]  T. Matsuo,et al.  Urea sensor based on an ion-sensitive field effect transistor. IV. Determination of urea in human blood. , 1987, Chemical & pharmaceutical bulletin.

[36]  R. Richards,et al.  Polymer surfaces and interfaces , 1987 .

[37]  S. Colowick,et al.  Methods in Enzymology , Vol , 1966 .

[38]  B. Danielsson,et al.  A Biosensor for ADP with Internal Substrate Amplification , 1987 .

[39]  Adam Heller,et al.  High current density "wired" quinoprotein glucose dehydrogenase electrode , 1993 .

[40]  M. Koudelka-Hep,et al.  Electrodeposition of glucose oxidase for the fabrication of miniature sensors , 1993 .

[41]  O. Niwa,et al.  Highly sensitive small volume voltammetry of reversible redox species with an IDA electrochemical cell and its application to selective detection of catecholamine , 1993 .

[42]  N. F. Rooij,et al.  Planar Amperometric Enzyme-Based Glucose Microelectrode , 1989 .

[43]  I. Willner,et al.  Mediated electron transfer in gluthathione reductase organized in self-assembled monolayers on gold electrodes , 1992 .

[44]  Christopher R. Lowe,et al.  Enzyme entrapment in electrically conducting polymers. Immobilisation of glucose oxidase in polypyrrole and its application in amperometric glucose sensors , 1986 .

[45]  B. Hoffmann,et al.  Chip biosensors on thin-film metal electrodes , 1991 .

[46]  P. Bartlett,et al.  Amperometric enzyme electrodes: Part IV. An enzyme electrode for ethanol , 1987 .

[47]  Philip N. Bartlett,et al.  Electrochemical immobilisation of enzymes: Part II. Glucose oxidase immobilised in poly-N-methylpyrrole , 1987 .

[48]  Frieder W. Scheller,et al.  Enzyme electrodes with substrate and co-enzyme amplification , 1985 .

[49]  A. Manz,et al.  Miniaturized total chemical analysis systems: A novel concept for chemical sensing , 1990 .

[50]  M. C. Feiters,et al.  Glucose sensor utilizing polypyrrole incorporated in tract-etch membranes as the mediator , 1992 .

[51]  F W Scheller,et al.  Enhancing biosensor performance using multienzyme systems. , 1993, Trends in biotechnology.

[52]  Philip N. Bartlett,et al.  Electrochemical immobilisation of enzymes: Part I. Theory , 1987 .

[53]  A. Berg,et al.  Silicon-Based Chlorine Sensor with On-Wafer Deposited Chemically Anchored Diffusion Membrane , 1992 .

[54]  M. W. Bruns,et al.  Silicon micromachining and high speed gas chromatography , 1992, Proceedings of the 1992 International Conference on Industrial Electronics, Control, Instrumentation, and Automation.

[55]  F. Armstrong,et al.  Direct electrochemistry of redox proteins , 1988 .

[56]  A. Heller,et al.  Amperometric biosensors based on three-dimensional hydrogel-forming epoxy networks , 1993 .

[57]  F. Armstrong,et al.  Diode-like behaviour of a mitochondrial electron-transport enzyme , 1992, Nature.

[58]  A. Heller,et al.  Bienzyme sensors based on “electrically wired” peroxidase† , 1993 .

[59]  Kenji Yokoyama,et al.  Integration of enzyme-immobilized column with electrochemical flow cell using micromachining techniques for a glucose detection system , 1993 .

[60]  Jonathan M. Cooper,et al.  A review of the immobilization of enzymes in electropolymerized films , 1993 .

[61]  Yoshio Hanazato,et al.  Neutral lipid enzyme electrode based on ion-sensitive field effect transistors , 1986 .

[62]  Koichi Aoki,et al.  Quantitative analysis of reversible diffusion-controlled currents of redox soluble species at interdigitated array electrodes under steady-state conditions , 1988 .

[63]  J. Janata,et al.  Field effect transistor sensitive to penicillin , 1980 .

[64]  T. Tatsuma,et al.  Bifunctional Langmuir-Blodgett film for enzyme immobilization and amperometric biosensor sensitization , 1991 .

[65]  S. Yabuki,et al.  Preparation and characterization of an electroconductive membrane containing glutamate dehydrogenase, NADP, and mediator , 1991 .

[66]  Frieder W. Scheller,et al.  Integrated differential enzyme sensors using hydrogen and fluoride ion sensitive multigate FETs , 1990 .

[67]  Paul D. Hale,et al.  A new class of amperometric biosensor incorporating a polymeric electron-transfer mediator , 1989 .

[68]  W. Benecke Silicon micromachining for microsensors and microactuators , 1990 .

[69]  S. Jeanneret,et al.  Microsystems for Flow Injection Analysis , 1993 .