Quantum-cutting Yb3+-doped perovskite nanocrystals for monolithic bilayer luminescent solar concentrators

Quantum-cutting Yb3+:CsPb(Cl1−xBrx)3 nanocrystals mitigate thermalization and reabsorption losses in a new monolithic bilayer luminescent solar concentrator device architecture.

[1]  A. Goetzberger,et al.  Solar energy conversion with fluorescent collectors , 1977 .

[2]  D. Hanna,et al.  Ytterbium-doped fiber amplifiers , 1997 .

[3]  David R. Needell,et al.  Design Criteria for Micro-Optical Tandem Luminescent Solar Concentrators , 2018, IEEE Journal of Photovoltaics.

[4]  Yuan Yao,et al.  Luminescent solar concentration with semiconductor nanorods and transfer-printed micro-silicon solar cells. , 2014, ACS nano.

[5]  Sarah R. Kurtz,et al.  29.5%‐efficient GaInP/GaAs tandem solar cells , 1994 .

[6]  James R. McBride,et al.  Near‐Unity Emitting Copper‐Doped Colloidal Semiconductor Quantum Wells for Luminescent Solar Concentrators , 2017, Advanced materials.

[7]  D. Gamelin,et al.  Analysis of Optical Losses in High-Efficiency CuInS2-Based Nanocrystal Luminescent Solar Concentrators: Balancing Absorption versus Scattering , 2017 .

[8]  Roland Winston,et al.  Viability of using near infrared PbS quantum dots as active materials in luminescent solar concentrators , 2010 .

[9]  R. Evans,et al.  Towards Efficient Spectral Converters through Materials Design for Luminescent Solar Devices , 2017, Advanced materials.

[10]  L. Goldberg,et al.  Highly efficient 4-W Yb-doped fiber amplifier pumped by a broad-stripe laser diode. , 1999, Optics letters.

[11]  S. Lima,et al.  On the efficient Te4+→Yb3+ cooperative energy transfer mechanism in tellurite glasses: A potential material for luminescent solar concentrators , 2019, Journal of Alloys and Compounds.

[12]  G. Griffini,et al.  Novel crosslinked host matrices based on fluorinated polymers for long-term durability in thin-film luminescent solar concentrators , 2013 .

[13]  Mpj Mariëlle Aarts,et al.  Visual performance of red luminescent solar concentrating windows in an office environment , 2016 .

[14]  Jaehoon Lim,et al.  Quality Factor of Luminescent Solar Concentrators and Practical Concentration Limits Attainable with Semiconductor Quantum Dots , 2016 .

[15]  F. Dimroth,et al.  Increasing the efficiency of fluorescent concentrator systems , 2009 .

[16]  Hongwei Song,et al.  Cerium and Ytterbium Codoped Halide Perovskite Quantum Dots: A Novel and Efficient Downconverter for Improving the Performance of Silicon Solar Cells , 2017, Advanced materials.

[17]  Keith W. J. Barnham,et al.  Quantum-dot concentrator and thermodynamic model for the global redshift , 2000 .

[18]  D. Gamelin,et al.  Tunneling in the Delayed Luminescence of Colloidal CdSe, Cu+-Doped CdSe, and CuInS2 Semiconductor Nanocrystals and Relationship to Blinking , 2016 .

[19]  D. Gamelin,et al.  Anion Exchange in Cesium Lead Halide Perovskite Nanocrystals and Thin Films Using Trimethylsilyl Halide Reagents , 2018, Chemistry of Materials.

[20]  D. Gamelin,et al.  Photodoping and Transient Spectroscopies of Copper-Doped CdSe/CdS Nanocrystals. , 2018, ACS nano.

[21]  Uwe R. Kortshagen,et al.  Highly efficient luminescent solar concentrators based on earth-abundant indirect-bandgap silicon quantum dots , 2017, Nature Photonics.

[22]  J. D. De Yoreo,et al.  Anion Exchange and the Quantum-Cutting Energy Threshold in Ytterbium-Doped CsPb(Cl1- xBr x)3 Perovskite Nanocrystals. , 2019, Nano letters.

[23]  D. Gamelin,et al.  Valence-Band Electronic Structures of Cu+-Doped ZnS, Alloyed Cu–In–Zn–S, and Ternary CuInS2 Nanocrystals: A Unified Description of Photoluminescence across Compositions , 2018, The Journal of Physical Chemistry C.

[24]  Andrzej Buczkowski,et al.  Neodymium-chromium doped phosphate glasses as luminescent solar concentrators , 1986 .

[25]  Daniel R. Gamelin,et al.  Zero-reabsorption doped-nanocrystal luminescent solar concentrators. , 2014, ACS nano.

[26]  Katherine A Mazzio,et al.  The future of organic photovoltaics. , 2015, Chemical Society reviews.

[27]  D. Gamelin,et al.  Quantum-Cutting Ytterbium-Doped CsPb(Cl1–xBrx)3 Perovskite Thin Films with Photoluminescence Quantum Yields over 190% , 2018, ACS Energy Letters.

[28]  Dongling Ma,et al.  Near Infrared, Highly Efficient Luminescent Solar Concentrators , 2016 .

[29]  Francesco Meinardi,et al.  Luminescent solar concentrators for building-integrated photovoltaics , 2017 .

[30]  S. Fischer,et al.  Broadband Sensitization of Lanthanide Emission with Indium Phosphide Quantum Dots for Visible to Near-Infrared Downshifting. , 2018, Journal of the American Chemical Society.

[31]  Eli Yablonovitch,et al.  Thermodynamics of the fluorescent planar concentrator , 1980 .

[32]  Kaifeng Wu,et al.  Tandem luminescent solar concentrators based on engineered quantum dots , 2018 .

[33]  Chen Li,et al.  Large Stokes Shift and High Efficiency Luminescent Solar Concentrator Incorporated with CuInS2/ZnS Quantum Dots , 2015, Scientific Reports.

[34]  Mool C. Gupta,et al.  PbSe quantum dot based luminescent solar concentrators , 2017, Nanotechnology.

[35]  D. Gamelin,et al.  Picosecond Quantum Cutting Generates Photoluminescence Quantum Yields Over 100% in Ytterbium-Doped CsPbCl3 Nanocrystals. , 2018, Nano letters.

[36]  Sayantani Ghosh,et al.  Hybrid Perovskite Thin Films as Highly Efficient Luminescent Solar Concentrators , 2016 .

[37]  Werner Groh,et al.  Overtone absorption in macromolecules for polymer optical fibers , 1988 .

[38]  W. Xie,et al.  Optimization of large-size glass laminated luminescent solar concentrators , 2015 .

[39]  J. Lambe,et al.  Luminescent greenhouse collector for solar radiation. , 1976, Applied optics.

[40]  Wilfried van Sark,et al.  Tackling self-absorption in Luminescent Solar Concentrators with type-II colloidal quantum dots , 2013 .

[41]  Jie Liu,et al.  An efficient light converter YAB:Cr3+,Yb3+/Nd3+ with broadband excitation and strong NIR emission for harvesting c-Si-based solar cells , 2014 .

[42]  A. Meijerink,et al.  Incorporation and luminescence of Yb3+ in CdSe nanocrystals. , 2013, Journal of the American Chemical Society.

[43]  Luogen Deng,et al.  Ray-trace simulation of CuInS(Se)₂ quantum dot based luminescent solar concentrators. , 2015, Optics express.

[44]  D. Gamelin,et al.  Computational Studies of the Electronic Structures of Copper-Doped CdSe Nanocrystals: Oxidation States, Jahn–Teller Distortions, Vibronic Bandshapes, and Singlet–Triplet Splittings , 2016 .

[45]  Sergio Brovelli,et al.  Large-area luminescent solar concentrators based on ‘Stokes-shift-engineered’ nanocrystals in a mass-polymerized PMMA matrix , 2014, Nature Photonics.

[46]  Tao Ding,et al.  Quantum-Cutting Luminescent Solar Concentrators Using Ytterbium-Doped Perovskite Nanocrystals. , 2018, Nano letters.

[47]  D. Gamelin,et al.  Nanocrystals for luminescent solar concentrators. , 2015, Nano letters.

[48]  Jonathan P. Mailoa,et al.  23.6%-efficient monolithic perovskite/silicon tandem solar cells with improved stability , 2017, Nature Energy.

[49]  S. Nizamoglu,et al.  Stokes-Shift-Engineered Indium Phosphide Quantum Dots for Efficient Luminescent Solar Concentrators , 2018, ACS applied materials & interfaces.

[50]  D. Gamelin,et al.  Bright CuInS2/CdS nanocrystal phosphors for high-gain full-spectrum luminescent solar concentrators. , 2015, Chemical communications.

[51]  Jun Xu,et al.  Monte-Carlo simulations of optical efficiency in luminescent solar concentrators based on all-inorganic perovskite quantum dots , 2018, Physica B: Condensed Matter.

[52]  Kelsey A. W. Horowitz,et al.  Raising the one-sun conversion efficiency of III–V/Si solar cells to 32.8% for two junctions and 35.9% for three junctions , 2017, Nature Energy.

[53]  Jian Xu,et al.  Monte Carlo study of PbSe quantum dots as the fluorescent material in luminescent solar concentrators. , 2014, Optics express.

[54]  Rebecca A. Belisle,et al.  Perovskite-perovskite tandem photovoltaics with optimized band gaps , 2016, Science.

[55]  N. Makarov,et al.  High-Performance CuInS2 Quantum Dot Laminated Glass Luminescent Solar Concentrators for Windows , 2018 .

[56]  Sung Wook Park,et al.  Doped Halide Perovskite Nanocrystals for Reabsorption-Free Luminescent Solar Concentrators , 2017, ACS energy letters.

[57]  Roland Winston,et al.  The thermodynamic limits of light concentrators , 1990 .

[58]  F. Rosei,et al.  Harnessing the properties of colloidal quantum dots in luminescent solar concentrators. , 2018, Chemical Society reviews.

[59]  Ruud E. I. Schropp,et al.  Nanoparticles for Luminescent Solar Concentrators - A review , 2018, Optical Materials.

[60]  Ronen Rapaport,et al.  Fabrication and optical properties of polymeric waveguides containing nanocrystalline quantum dots , 2004 .

[61]  Massimo Moret,et al.  NIR emitting ytterbium chelates for colourless luminescent solar concentrators. , 2012, Physical chemistry chemical physics : PCCP.

[62]  Patrick J. Whitham,et al.  Luminescent Colloidal Semiconductor Nanocrystals Containing Copper: Synthesis, Photophysics, and Applications. , 2016, Chemical reviews.

[63]  P. Hagenmuller,et al.  Nd3+ → Yb3+ energy transfer in glasses with composition close to LiLnP4O12 metaphosphate (Ln = La, Nd, Yb) , 1986 .

[64]  Hunter McDaniel,et al.  Highly efficient large-area colourless luminescent solar concentrators using heavy-metal-free colloidal quantum dots. , 2015, Nature nanotechnology.

[65]  Paul P. C. Verbunt,et al.  Thirty Years of Luminescent Solar Concentrator Research: Solar Energy for the Built Environment , 2012 .

[66]  D. Gamelin,et al.  A Selective Cation Exchange Strategy for the Synthesis of Colloidal Yb3+-Doped Chalcogenide Nanocrystals with Strong Broadband Visible Absorption and Long-Lived Near-Infrared Emission. , 2017, Journal of the American Chemical Society.

[67]  Zhiming M. Wang,et al.  Efficient and stable tandem luminescent solar concentrators based on carbon dots and perovskite quantum dots , 2018, Nano Energy.

[68]  Jaehoon Lim,et al.  Performance Limits of Luminescent Solar Concentrators Tested with Seed/Quantum-Well Quantum Dots in a Selective-Reflector-Based Optical Cavity. , 2018, Nano letters.

[69]  D. Tsai,et al.  Near-infrared quantum cutting platform in thermally stable phosphate phosphors for solar cells. , 2013, Inorganic chemistry.

[70]  J Franklin,et al.  Optimisation of a three-colour luminescent solar concentrator daylighting system , 2004 .

[71]  Moungi G Bawendi,et al.  Core/shell quantum dot based luminescent solar concentrators with reduced reabsorption and enhanced efficiency. , 2014, Nano letters.

[72]  A. D. Vos,et al.  Detailed balance limit of the efficiency of tandem solar cells , 1980 .

[73]  Timothy D Heidel,et al.  High-Efficiency Organic Solar Concentrators for Photovoltaics , 2008, Science.

[74]  Fuzhi Huang,et al.  Print flexible solar cells , 2016, Nature.

[75]  F. Rosei,et al.  Perovskite quantum dots integrated in large-area luminescent solar concentrators , 2017 .

[76]  Michael G. Debije,et al.  Measured Efficiency of a Luminescent Solar Concentrator PV Module Called Leaf Roof , 2017, IEEE Journal of Photovoltaics.

[77]  Panos Moraitis,et al.  The “Electric Mondrian” as a Luminescent Solar Concentrator Demonstrator Case Study , 2017 .