A mixed finite element for shell model with free edge boundary conditions Part 3. Numerical aspects

Abstract The mixed formulation for shells, which is presented here, is based on Koiter's model for thin elastic shells, the Kirchhoff-Love's kinematical relations being ensured through the use of Lagrange multipliers. After a brief recall of the mixed variational formulation, we give an appropriate choice for finite elements approximation. Then, we develop some aspects, related to geometry approximation and numerical implementation. In particular, in order to overcome membrane locking, improvements are suggested and we check the good behaviour of this formulation on some classical examples of published papers.

[1]  R. L. Harder,et al.  A proposed standard set of problems to test finite element accuracy , 1985 .

[2]  M. Bernadou,et al.  Approximation of general shell problems by flat plate elements , 1989 .

[3]  Jerome J. Connor,et al.  Stiffness Matrix for Shallow Rectangular Shell Element , 1967 .

[4]  Vivette Girault,et al.  Finite Element Methods for Navier-Stokes Equations - Theory and Algorithms , 1986, Springer Series in Computational Mathematics.

[5]  Eduardo N. Dvorkin,et al.  A formulation of general shell elements—the use of mixed interpolation of tensorial components† , 1986 .

[6]  Philippe Destuynder,et al.  A mixed finite element for shell model with free edge boundary conditions Part 2. The numerical scheme , 1995 .

[7]  E. Hinton,et al.  A new nine node degenerated shell element with enhanced membrane and shear interpolation , 1986 .

[8]  H. Parisch,et al.  A critical survey of the 9-node degenerated shell element with special emphasis on thin shell application and reduced integration , 1979 .

[9]  F. Brezzi On the existence, uniqueness and approximation of saddle-point problems arising from lagrangian multipliers , 1974 .

[10]  K. S. Lo,et al.  Computer analysis in cylindrical shells , 1964 .

[11]  W. Flügge Stresses in Shells , 1960 .

[12]  A new finite element scheme for bending plates , 1988 .

[13]  J. C. Simo,et al.  On a stress resultant geometrically exact shell model. Part III: computational aspects of the nonlinear theory , 1990 .

[14]  M. De Handbuch der Physik , 1957 .

[15]  Ph. Destuynder,et al.  Some numerical aspects of mixed finite elements for bending plates , 1990 .

[16]  Jacques Periaux,et al.  Proceedings of the Fifth International Symposium on Numerical Methods in Engineering , 1989 .

[17]  P. M. Naghdi,et al.  The Theory of Shells and Plates , 1973 .

[18]  Richard H. Macneal,et al.  A simple quadrilateral shell element , 1978 .

[19]  T. Belytschko,et al.  Shear and membrane locking in curved C0 elements , 1983 .

[20]  John L. Meek,et al.  A faceted shell element with Loof nodes , 1986 .

[21]  P. G. Ciarlet,et al.  Sur L’Ellipticite du Modele Lineaire de coques de W.T. Koiter , 1976 .

[22]  P. Lascaux,et al.  Analyse numérique matricielle appliquée a l'art de l'ingénieur , 1987 .

[23]  Philippe Destuynder,et al.  A mixed finite element for shell model with free edge boundary conditions Part 1. The mixed variational formulation , 1995 .

[24]  G. Dhatt,et al.  Modélisation des structures par éléments finis , 1990 .

[25]  Hou-Cheng Huang,et al.  Static and Dynamic Analyses of Plates and Shells , 1989 .