Localized and nonlocalized plasmon resonance enhanced light absorption in metal-insulator-metal nanostructures

Multiple absorption bands in a metal-insulator-metal (MIM) nanostructure are comprehensively investigated in the visible and near-infrared (near-IR) regime. The MIM nanostructure consists of patterned gold squares with systematically varying size and period atop a thin aluminum nitride dielectric layer on a thick gold film. Both the transverse-electric (TE) slab-waveguide mode and the transverse-magnetic (TM) surface plasmon-polariton mode can be excited in the nanostructure. Grating coupling of the incident light into nonlocalized traveling waves is found from electromagnetic field patterns and from the linear dispersion of the absorption modes with period. A localized mode strengthens the near-IR absorption band for small square sizes, and the resonance shifts to red for large square sizes.

[1]  Ole Albrektsen,et al.  Efficient absorption of visible radiation by gap plasmon resonators. , 2012, Optics express.

[2]  Ruey-Lin Chern,et al.  Polarization-independent broad-band nearly perfect absorbers in the visible regime. , 2011, Optics express.

[3]  Richard Soref,et al.  Wideband perfect light absorber at midwave infrared using multiplexed metal structures. , 2012, Optics letters.

[4]  Koray Aydin,et al.  Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers. , 2011, Nature communications.

[5]  O. Hunderi,et al.  The optical absorption in partially disordered silver films , 1973 .

[6]  Gennady Shvets,et al.  Design of metamaterial surfaces with broadband absorbance. , 2011, Optics letters.

[7]  Willie J. Padilla,et al.  A dual band terahertz metamaterial absorber , 2010 .

[8]  J. C. Wu,et al.  A wide-angle dual-band infrared perfect absorber based on metal–dielectric–metal split square-ring and square array , 2012 .

[9]  Huaiwu Zhang,et al.  Dual band terahertz metamaterial absorber: Design, fabrication, and characterization , 2009 .

[10]  Costas M. Soukoulis,et al.  Wide-angle perfect absorber/thermal emitter in the terahertz regime , 2008, 0807.2479.

[11]  W. M. Saj,et al.  Periodically structured plasmonic waveguides , 2008, SPIE Photonics Europe.

[12]  Iam-Choon Khoo,et al.  Polarization-independent dual-band infrared perfect absorber based on a metal-dielectric-metal elliptical nanodisk array. , 2011, Optics express.

[13]  R. Wood XLII. On a remarkable case of uneven distribution of light in a diffraction grating spectrum , 1902 .

[14]  R. Wood,et al.  On a Remarkable Case of Uneven Distribution of Light in a Diffraction Grating Spectrum , 1902 .

[15]  Willie J Padilla,et al.  A metamaterial absorber for the terahertz regime: design, fabrication and characterization. , 2008, Optics express.

[16]  Romain Quidant,et al.  Coupling localized and extended plasmons to improve the light extraction through metal films. , 2007, Optics express.

[17]  D. Werner,et al.  Conformal dual-band near-perfectly absorbing mid-infrared metamaterial coating. , 2011, ACS nano.

[18]  Junpeng Guo,et al.  Multispectral near-perfect metamaterial absorbers using spatially multiplexed plasmon resonance metal square structures , 2013 .

[19]  Anders Pors,et al.  Efficient and broadband quarter-wave plates by gap-plasmon resonators. , 2013, Optics express.

[20]  Willie J Padilla,et al.  Perfect metamaterial absorber. , 2008, Physical review letters.

[21]  E. Palik Handbook of Optical Constants of Solids , 1997 .

[22]  M. Hentschel,et al.  Infrared perfect absorber and its application as plasmonic sensor. , 2010, Nano letters.

[23]  N. Mattiucci,et al.  Impedance matched thin metamaterials make metals absorbing , 2013, Scientific Reports.

[24]  Willie J Padilla,et al.  Highly-flexible wide angle of incidence terahertz metamaterial absorber , 2008, 0808.2416.

[25]  A. A. Oliner,et al.  A New Theory of Wood’s Anomalies on Optical Gratings , 1965 .

[26]  H. Atwater,et al.  Light trapping beyond the 4n2 limit in thin waveguides , 2012 .

[27]  Nicolas Bonod,et al.  Total absorption of light by lamellar metallic gratings. , 2008, Optics express.

[28]  Sailing He,et al.  Omnidirectional, polarization-insensitive and broadband thin absorber in the terahertz regime , 2010 .

[29]  Yia-Chung Chang,et al.  Wide-angle polarization independent infrared broadband absorbers based on metallic multi-sized disk arrays. , 2012, Optics express.

[30]  K. Crozier,et al.  Experimental study of the interaction between localized and propagating surface plasmons. , 2009, Optics letters.

[31]  D. Wasserman,et al.  Strong absorption and selective thermal emission from a midinfrared metamaterial , 2011 .

[32]  Qun Wu,et al.  Dual-Band Terahertz Metamaterial Absorber with Polarization Insensitivity and Wide Incident Angle , 2011 .

[33]  Nicolas Bonod,et al.  Absorption of light by extremely shallow metallic gratings: metamaterial behavior. , 2009, Optics express.

[34]  D. Cumming,et al.  A terahertz polarization insensitive dual band metamaterial absorber. , 2011, Optics letters.

[35]  Zeyu Zhao,et al.  Realizing near-perfect absorption at visible frequencies. , 2009, Optics express.