The objectification of overlearned sequences: A new view of spatial sequence synesthesia

[1]  S. Leal,et al.  The genetics of colored sequence synesthesia: Evidence of linkage to chromosome 16q and genetic heterogeneity for the condition , 2009 .

[2]  J. Simner,et al.  A foundation for savantism? Visuo-spatial synaesthetes present with cognitive benefits , 2009, Cortex.

[3]  D. Smilek,et al.  A different outlook on time: Visual and auditory month names elicit different mental vantage points for a time-space synaesthete , 2009, Cortex.

[4]  Mark C. Price Spatial forms and mental imagery , 2009, Cortex.

[5]  Stanislas Dehaene,et al.  What information is critical to elicit interference in number-form synaesthesia? , 2009, Cortex.

[6]  M. Goodale,et al.  Why color synesthesia involves more than color , 2009, Trends in Cognitive Sciences.

[7]  D. Eagleman,et al.  Wednesday Is Indigo Blue: Discovering the Brain of Synesthesia , 2009 .

[8]  Sara J. Churchill,et al.  Why overlearned sequences are special: distinct neural networks in the right hemisphere for ordinal sequences , 2008 .

[9]  Brian Butterworth,et al.  Number Forms in the Brain , 2008, Journal of Cognitive Neuroscience.

[10]  Stefan Heim,et al.  Are numbers special? Comparing the generation of verbal materials from ordered categories (months) to numbers and other categories (animals) in an fMRI study , 2008, Human brain mapping.

[11]  R. Mentzoni,et al.  Where is January? The month-SNARC effect in sequence-form synaesthetes , 2008, Cortex.

[12]  W. Gevers,et al.  The SNARC effect does not imply a mental number line , 2008, Cognition.

[13]  Guilherme Wood,et al.  Numbers, space, and action – From finger counting to the mental number line and beyond , 2008, Cortex.

[14]  M. Tarr,et al.  Visual object recognition: do we know more now than we did 20 years ago? , 2007, Annual Review of Psychology.

[15]  G. Orban,et al.  Processing of Abstract Ordinal Knowledge in the Horizontal Segment of the Intraparietal Sulcus , 2007, The Journal of Neuroscience.

[16]  D. Smilek,et al.  Ovals of time: Time-space associations in synaesthesia , 2007, Consciousness and Cognition.

[17]  S. Ueno,et al.  Distinct neural correlates underlying two- and three-dimensional mental rotations using three-dimensional objects , 2007, Brain Research.

[18]  Avishai Henik,et al.  Can synaesthesia research inform cognitive science? , 2007, Trends in Cognitive Sciences.

[19]  P. Montague,et al.  Vividness of mental imagery: Individual variability can be measured objectively , 2007, Vision Research.

[20]  Avishai Henik,et al.  Notation-Dependent and -Independent Representations of Numbers in the Parietal Lobes , 2007, Neuron.

[21]  S. Dehaene,et al.  A Magnitude Code Common to Numerosities and Number Symbols in Human Intraparietal Cortex , 2007, Neuron.

[22]  D. Eagleman,et al.  A standardized test battery for the study of synesthesia , 2007, Journal of Neuroscience Methods.

[23]  Jonathan Winawer,et al.  Synesthetic Colors Determined by Having Colored Refrigerator Magnets in Childhood , 2006, Cortex.

[24]  Guilherme Wood,et al.  Crossed Hands and the Snarc Effect: Afailure to Replicate Dehaene, Bossini and Giraux (1993) , 2006, Cortex.

[25]  N. Sagiv,et al.  What is the relationship between synaesthesia and visuo-spatial number forms? , 2006, Cognition.

[26]  Wim Fias,et al.  Automatic response activation of implicit spatial information: Evidence from the SNARC effect. , 2006, Acta psychologica.

[27]  Anina N. Rich,et al.  A systematic, large-scale study of synaesthesia: implications for the role of early experience in lexical-colour associations , 2005, Cognition.

[28]  Nicolas Costes,et al.  Task-independent semantic activation for numbers and animals. , 2005, Brain research. Cognitive brain research.

[29]  S. Dehaene,et al.  Interactions between number and space in parietal cortex , 2005, Nature Reviews Neuroscience.

[30]  Jamie Ward,et al.  Is Synaesthesia an X-Linked Dominant Trait with Lethality in Males? , 2005, Perception.

[31]  Geoffrey M. Boynton,et al.  Individual Differences among Grapheme-Color Synesthetes: Brain-Behavior Correlations , 2005, Neuron.

[32]  A. Nieder Counting on neurons: the neurobiology of numerical competence , 2005, Nature Reviews Neuroscience.

[33]  Wim Fias,et al.  The Mental Representation of Ordinal Sequences is Spatially Organised: Evidence from Days of the Week , 2004, Cortex.

[34]  Philippe Pinel,et al.  Tuning Curves for Approximate Numerosity in the Human Intraparietal Sulcus , 2004, Neuron.

[35]  Andreas Nieder,et al.  A parieto-frontal network for visual numerical information in the monkey. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[36]  Stanislas Dehaene,et al.  Specialization within the ventral stream: the case for the visual word form area , 2004, NeuroImage.

[37]  C. Rorden,et al.  Mental Representation of Number in Different Numerical Forms , 2003, Current Biology.

[38]  S. Dehaene,et al.  Visual word recognition in the left and right hemispheres: anatomical and functional correlates of peripheral alexias. , 2003, Cerebral cortex.

[39]  S. Dehaene,et al.  THREE PARIETAL CIRCUITS FOR NUMBER PROCESSING , 2003, Cognitive neuropsychology.

[40]  Wim Fias,et al.  The mental representation of ordinal sequences is spatially organized , 2003, Cognition.

[41]  A. Kleinschmidt,et al.  A Supramodal Number Representation in Human Intraparietal Cortex , 2003, Neuron.

[42]  Isabel Gauthier,et al.  BOLD Activity during Mental Rotation and Viewpoint-Dependent Object Recognition , 2002, Neuron.

[43]  D. Eagleman Visual illusions and neurobiology , 2001, Nature Reviews Neuroscience.

[44]  D. LeBihan,et al.  Modulation of Parietal Activation by Semantic Distance in a Number Comparison Task , 2001, NeuroImage.

[45]  D. Le Bihan,et al.  Distinct Cortical Areas for Names of Numbers and Body Parts Independent of Language and Input Modality , 2000, NeuroImage.

[46]  M. Erb,et al.  Activation of Cortical and Cerebellar Motor Areas during Executed and Imagined Hand Movements: An fMRI Study , 1999, Journal of Cognitive Neuroscience.

[47]  M. Tarr,et al.  Activation of the middle fusiform 'face area' increases with expertise in recognizing novel objects , 1999, Nature Neuroscience.

[48]  E T Bullmore,et al.  The functional anatomy of imagining and perceiving colour , 1998, Neuroreport.

[49]  C. Colby,et al.  Spatial representations for action in parietal cortex. , 1996, Brain research. Cognitive brain research.

[50]  W. Fias The Importance of Magnitude Information in Numerical Processing: Evidence from the SNARC Effect , 1996 .

[51]  Peter Andersen,et al.  Quantitative relations between parietal activation and performance in mental rotation , 1996, Neuroreport.

[52]  S. Dehaene,et al.  The mental representation of parity and number magnitude. , 1993 .

[53]  Marie-Pascale Noël,et al.  Images of numbers, or “when 98 is upper left and 6 sky blue” , 1992, Cognition.

[54]  J. Sergent,et al.  Functional neuroanatomy of face and object processing. A positron emission tomography study. , 1992, Brain : a journal of neurology.

[55]  P. Seymour Internal representation of the months , 1980 .

[56]  S. McKelvie,et al.  Individual Differences in Reported Visual Imagery and Cognitive Performance , 1978, Perceptual and motor skills.

[57]  D. B. Bender,et al.  Visual Receptive Fields of Neurons in Inferotemporal Cortex of the Monkey , 1969, Science.

[58]  Gary F. Egan,et al.  Real and Imaginary Rotary Motion Processing: Functional Parcellation of the Human Parietal Lobe Revealed by fMRI , 2005, Journal of Cognitive Neuroscience.

[59]  G. Orban,et al.  Parietal Representation of Symbolic and Nonsymbolic Magnitude , 2003, Journal of Cognitive Neuroscience.

[60]  B. Shanon,et al.  Colour associates to semantic linear orders , 1982, Psychological research.

[61]  R. Wheeler The synaesthesia of a blind subject , 2022 .

[62]  F. Galton Inquiries into Human Faculty and Its Development , 1883 .