Scrambled polynomial lattice rules for infinite-dimensional integration
暂无分享,去创建一个
[1] Stefan Heinrich,et al. Multilevel Monte Carlo Methods , 2001, LSSC.
[2] Fred J. Hickernell,et al. Deterministic multi-level algorithms for infinite-dimensional integration on RN , 2011, J. Complex..
[3] Klaus Ritter,et al. Average-case analysis of numerical problems , 2000, Lecture notes in mathematics.
[4] E. Novak. Deterministic and Stochastic Error Bounds in Numerical Analysis , 1988 .
[5] Fred J. Hickernell,et al. Multi-level Monte Carlo algorithms for infinite-dimensional integration on RN , 2010, J. Complex..
[6] Michael Gnewuch,et al. Infinite-dimensional integration on weighted Hilbert spaces , 2012, Math. Comput..
[7] Grzegorz W. Wasilkowski,et al. Tractability of infinite-dimensional integration in the worst case and randomized settings , 2011, J. Complex..
[8] Stefan Heinrich,et al. Monte Carlo Complexity of Global Solution of Integral Equations , 1998, J. Complex..
[9] K. Ritter,et al. Multi-Level {M}onte {C}arlo Algorithms for Infinite-Dimensional Integration on $\mathbb{R}^\mathbb{N}$ , 2010 .
[10] A. Owen. Randomly Permuted (t,m,s)-Nets and (t, s)-Sequences , 1995 .
[11] Josef Dick,et al. A construction of polynomial lattice rules with small gain coefficients , 2011, Numerische Mathematik.
[12] Fred J. Hickernell,et al. Strong tractability of integration using scrambled Niederreiter points , 2005, Math. Comput..
[13] Junichi Imai,et al. Quasi-Monte Carlo Method for Infinitely Divisible Random Vectors via Series Representations , 2010, SIAM J. Sci. Comput..
[14] Fred J. Hickernell,et al. Monte Carlo Simulation of Stochastic Integrals when the Cost of Function Evaluation Is Dimension Dependent , 2009 .
[15] Steffen Dereich,et al. Infinite-Dimensional Quadrature and Approximation of Distributions , 2009, Found. Comput. Math..
[16] M. Giles. Improved Multilevel Monte Carlo Convergence using the Milstein Scheme , 2008 .
[17] Michael B. Giles,et al. Multilevel Monte Carlo Path Simulation , 2008, Oper. Res..
[18] H. Woxniakowski. Information-Based Complexity , 1988 .
[19] Ben Niu,et al. Deterministic Multi-level Algorithms for Infinite-dimensional Integration on {$\mathbb{R}^{\mathbb{N}}$} , 2010 .
[20] Henryk Wozniakowski,et al. Liberating the dimension , 2010, J. Complex..
[21] Michael Gnewuch,et al. Weighted geometric discrepancies and numerical integration on reproducing kernel Hilbert spaces , 2012, J. Complex..