Legendre Transforms of Electrostatic Free-Energy Functionals

In the Poisson--Boltzmann (PB) theory, the electrostatic free-energy functional of all possible electrostatic potentials for an ionic solution is often formulated in such a way that the Euler--Lagrange equation of such a functional is exactly the PB equation. However, such a PB functional is concave downward and maximized at its critical point, making it inconsistent in many applications where a macroscopic free-energy functional is minimized. Maggs [Europhys. Lett., 98 (2012), 16012] proposed a Legendre transformed form of the electrostatic free-energy functional of all possible dielectric displacements. This new functional is convex and minimized at the displacement corresponding to the critical point of the PB functional, and the minimum value is exactly the equilibrium electrostatic free energy. In this work, we study mathematically the Legendre transformed electrostatic free-energy functionals and the related variational principles. We first prove that the PB functional and its Legendre transformed f...

[1]  R. Podgornik,et al.  Structural interactions in ionic liquids linked to higher-order Poisson-Boltzmann equations. , 2017, Physical review. E.

[2]  Shibin Dai,et al.  Convergence of Phase-Field Free Energy and Boundary Force for Molecular Solvation , 2016, 1606.04620.

[3]  R. Podgornik,et al.  General theory of asymmetric steric interactions in electrostatic double layers. , 2015, Soft matter.

[4]  Bo Li,et al.  Diffused Solute-Solvent Interface with Poisson-Boltzmann Electrostatics: Free-Energy Variation and Sharp-Interface Limit , 2015, SIAM J. Appl. Math..

[5]  A C Maggs,et al.  Convexity and Stiffness in Energy Functions for Electrostatic Simulations. , 2015, Journal of chemical theory and computation.

[6]  J. Andrew McCammon,et al.  Variational Implicit Solvation with Poisson–Boltzmann Theory , 2014, Journal of chemical theory and computation.

[7]  Shenggao Zhou,et al.  Ionic size effects: generalized Boltzmann distributions, counterion stratification and modified Debye length , 2013, Nonlinearity.

[8]  Jinn-Liang Liu,et al.  Correlated ions in a calcium channel model: a Poisson-Fermi theory. , 2013, The journal of physical chemistry. B.

[9]  G. Burton Sobolev Spaces , 2013 .

[10]  Pavel V. Danilov,et al.  Formulation of a new and simple nonuniform size‐modified poisson–boltzmann description , 2012, J. Comput. Chem..

[11]  A. C. Maggs A minimizing principle for the Poisson-Boltzmann equation , 2012, 1201.1415.

[12]  Bo Li,et al.  Dielectric Boundary Force in Molecular Solvation with the Poisson-Boltzmann Free Energy: A Shape Derivative Approach , 2011, SIAM J. Appl. Math..

[13]  Shenggao Zhou,et al.  Mean-field description of ionic size effects with nonuniform ionic sizes: a numerical approach. , 2011, Physical review. E, Statistical, nonlinear, and soft matter physics.

[14]  Y. C. Zhou,et al.  Poisson-Nernst-Planck equations for simulating biomolecular diffusion-reaction processes II: size effects on ionic distributions and diffusion-reaction rates. , 2011, Biophysical journal.

[15]  A. Kornyshev,et al.  Double layer in ionic liquids: overscreening versus crowding. , 2010, Physical review letters.

[16]  YunKyong Hyon,et al.  Energy variational analysis of ions in water and channels: Field theory for primitive models of complex ionic fluids. , 2010, The Journal of chemical physics.

[17]  Bo Li,et al.  Minimization of Electrostatic Free Energy and the Poisson-Boltzmann Equation for Molecular Solvation with Implicit Solvent , 2009, SIAM J. Math. Anal..

[18]  Bo Li Continuum electrostatics for ionic solutions with non-uniform ionic sizes , 2009 .

[19]  G. Tresset Generalized Poisson-Fermi formalism for investigating size correlation effects with multiple ions. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.

[20]  R. Zia,et al.  Making sense of the Legendre transform , 2008, 0806.1147.

[21]  J Andrew McCammon,et al.  Electrostatic Free Energy and Its Variations in Implicit Solvent Models , 2022 .

[22]  Sebastian Doniach,et al.  Evaluation of ion binding to DNA duplexes using a size-modified Poisson-Boltzmann theory. , 2007, Biophysical journal.

[23]  Alexei A Kornyshev,et al.  Double-layer in ionic liquids: paradigm change? , 2007, The journal of physical chemistry. B.

[24]  M. Bazant,et al.  Steric effects in the dynamics of electrolytes at large applied voltages. II. Modified Poisson-Nernst-Planck equations. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[25]  M. Bazant,et al.  Steric effects in the dynamics of electrolytes at large applied voltages. I. Double-layer charging. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[26]  J A McCammon,et al.  Coupling nonpolar and polar solvation free energies in implicit solvent models. , 2006, The Journal of chemical physics.

[27]  J A McCammon,et al.  Coupling hydrophobicity, dispersion, and electrostatics in continuum solvent models. , 2005, Physical review letters.

[28]  Federico Fogolari,et al.  On the variational approach to Poisson–Boltzmann free energies , 1997 .

[29]  H. Orland,et al.  Steric Effects in Electrolytes: A Modified Poisson-Boltzmann Equation , 1997, cond-mat/9803258.

[30]  P. Bassanini,et al.  Elliptic Partial Differential Equations of Second Order , 1997 .

[31]  Veronika Kralj-Iglič,et al.  A Simple Statistical Mechanical Approach to the free Energy of the Electric Double Layer Including the Excluded Volume Effect , 1996 .

[32]  David Andelman,et al.  Electrostatic Properties of Membranes: The Poisson-Boltzmann Theory , 1995 .

[33]  J. Andrew McCammon,et al.  Computation of electrostatic forces on solvated molecules using the Poisson-Boltzmann equation , 1993 .

[34]  Barry Honig,et al.  Calculating total electrostatic energies with the nonlinear Poisson-Boltzmann equation , 1990 .

[35]  Malcolm E. Davis,et al.  Electrostatics in biomolecular structure and dynamics , 1990 .

[36]  Clayton J. Radke,et al.  Variational approach to the electrostatic free energy in charged colloidal suspensions: general theory for open systems , 1990 .

[37]  R. Temam,et al.  Navier-Stokes equations: theory and numerical analysis: R. Teman North-Holland, Amsterdam and New York. 1977. 454 pp. US $45.00 , 1978 .

[38]  丸山 徹 Convex Analysisの二,三の進展について , 1977 .

[39]  M. Eigen,et al.  The Thermodynamics of Electrolytes at Higher Concentration , 1954 .

[40]  G. M.,et al.  Partial Differential Equations I , 2023, Applied Mathematical Sciences.