Energy Aware and Quality of Service Routing Mechanism for Hybrid Internet of Things Network

Wireless Multimedia Sensor Networks (WMSNs) based on IEEE 802.11 mesh networks are effective and suitable solutions for video surveillance systems in detecting intrusions in selected monitored areas. The IEEE 802.11-based WMSNs offer high bit rate video transmissions but are challenged by energy inefficiency issues and concerns. To resolve the energy inefficiency challenges, the salient research studies proposed a hybrid architecture. This newly evolved architecture is based on the integration of IEEE 802.11-based mesh WMSNs along with the LoRa network to form an autonomous and high bitrate, energy-efficient video surveillance system. This paper proposes an energy-aware and Quality of Service (QoS) routing mechanism for mesh-connected visual sensor nodes in a hybrid Internet of Things (IoT) network. The routing algorithm allows routing a set of video streams with guaranteed bandwidth and limited delay using as few visual sensor nodes as possible in the network. The remaining idle visual sensor nodes can be turned off completely, and thus it can significantly minimize the overall energy consumption of the network. The proposed algorithm is numerically simulated, and the results show that the proposed approach can help in saving a significant amount of energy consumption while guaranteeing bandwidth and limited delay.