Empirical scaling analyzer: An automated system for empirical analysis of performance scaling
暂无分享,去创建一个
Holger H. Hoos | Zongxu Mu | Yasha Pushak | H. Hoos | Y. Pushak | Zongxu Mu
[1] Thomas Stützle,et al. On the empirical scaling of running time for finding optimal solutions to the TSP , 2018, J. Heuristics.
[2] Thomas Stützle,et al. The Impact of Automated Algorithm Configuration on the Scaling Behaviour of State-of-the-Art Inexact TSP Solvers , 2016, LION.
[3] Aaron Klein,et al. Efficient and Robust Automated Machine Learning , 2015, NIPS.
[4] Holger H. Hoos,et al. On the Empirical Time Complexity of Random 3-SAT at the Phase Transition , 2015, IJCAI.
[5] Thomas Stützle,et al. On the Empirical Scaling Behaviour of State-of-the-art Local Search Algorithms for the Euclidean TSP , 2015, GECCO.
[6] Zongxu Mu. Analysing the empirical time complexity of high-performance algorithms for SAT and TSP , 2015 .
[7] Thomas Stützle,et al. On the empirical scaling of run-time for finding optimal solutions to the travelling salesman problem , 2014, Eur. J. Oper. Res..
[8] Camil Demetrescu,et al. Input-Sensitive Profiling , 2012, IEEE Transactions on Software Engineering.
[9] Holger H. Hoos,et al. Ordered racing protocols for automatically configuring algorithms for scaling performance , 2013, GECCO '13.
[10] Shigenobu Kobayashi,et al. A Powerful Genetic Algorithm Using Edge Assembly Crossover for the Traveling Salesman Problem , 2013, INFORMS J. Comput..
[11] Kevin Leyton-Brown,et al. Auto-WEKA: combined selection and hyperparameter optimization of classification algorithms , 2012, KDD.
[12] Olaf Chitil,et al. Practical typed lazy contracts , 2012, ICFP.
[13] Matthias Hauswirth,et al. Algorithmic profiling , 2012, PLDI.
[14] Holger H. Hoos,et al. Automatically Configuring Algorithms for Scaling Performance , 2012, LION.
[15] Kevin Leyton-Brown,et al. Sequential Model-Based Optimization for General Algorithm Configuration , 2011, LION.
[16] Quan Sun,et al. Sampling-based Prediction of Algorithm Runtime , 2009 .
[17] William J. Cook,et al. The Traveling Salesman Problem: A Computational Study , 2007 .
[18] Anne Condon,et al. Computational RNA secondary structure design: empirical complexity and improved methods , 2007, BMC Bioinformatics.
[19] Gregory Gutin,et al. The traveling salesman problem , 2006, Discret. Optim..
[20] K. Subramani,et al. On the Empirical Efficiency of the Vertex Contraction Algorithm for Detecting Negative Cost Cyles in Networks , 2005, International Conference on Computational Science.
[21] Thomas Stützle,et al. Stochastic Local Search: Foundations & Applications , 2004 .
[22] Gilles Dequen,et al. kcnfs: An Efficient Solver for Random k-SAT Formulae , 2003, SAT.
[23] Daniel Kunkle. Empirical Complexities of Longest Common Subsequence Algorithms , 2002 .
[24] Keld Helsgaun,et al. An effective implementation of the Lin-Kernighan traveling salesman heuristic , 2000, Eur. J. Oper. Res..
[25] Paul R. Cohen,et al. Using Finite Experiments to Study Asymptotic Performance , 2000, Experimental Algorithmics.
[26] Thomas Stützle,et al. Towards a Characterisation of the Behaviour of Stochastic Local Search Algorithms for SAT , 1999, Artif. Intell..
[27] Shigenobu Kobayashi,et al. Edge Assembly Crossover: A High-Power Genetic Algorithm for the Travelling Salesman Problem , 1997, ICGA.
[28] Bart Selman,et al. Noise Strategies for Improving Local Search , 1994, AAAI.