Degenerate Turán densities of sparse hypergraphs

For fixed integers $r>k\ge 2,e\ge 3$, let $f_r(n,er-(e-1)k,e)$ be the maximum number of edges in an $r$-uniform hypergraph in which the union of any $e$ distinct edges contains at least $er-(e-1)k+1$ vertices. A classical result of Brown, Erdős and Sos in 1973 showed that $f_r(n,er-(e-1)k,e)=\Theta(n^k).$ The degenerate Turan density is defined to be the limit (if it exists) $$\pi(r,k,e):=\lim_{n\rightarrow\infty}\frac{f_r(n,er-(e-1)k,e)}{n^k}.$$ Extending a recent result of Glock for the special case of $r=3,k=2,e=3$, we show that $$\pi(r,2,3):=\lim_{n\rightarrow\infty}\frac{f_r(n,3r-4,3)}{n^2}=\frac{1}{r^2-r-1}$$ for arbitrary fixed $r\ge 4$. For the more general cases $r>k\ge 3$, we show that $$\frac{1}{r^k-r}\le\liminf_{n\rightarrow\infty}\frac{f_r(n,3r-2k,3)}{n^k}\le\limsup_{n\rightarrow\infty}\frac{f_r(n,3r-2k,3)}{n^k}\le \frac{1}{k!\binom{r}{k}-\frac{k!}{2}}.$$ The main difficulties in proving these results are the constructions establishing the lower bounds. The first construction is recursive and purely combinatorial, and is based on a (carefully designed) approximate induced decomposition of the complete graph, whereas the second construction is algebraic, and is proved by a newly defined matrix property which we call {\it strongly 3-perfect hashing}.

[1]  Deryk Osthus,et al.  The existence of designs via iterative absorption , 2016 .

[2]  Noga Alon,et al.  On An Extremal Hypergraph Problem Of Brown, Erdős And Sós , 2006, Comb..

[3]  David Conlon,et al.  Rational exponents in extremal graph theory , 2015, 1506.06406.

[4]  Paul Erdös,et al.  On some extremal problems on r-graphs , 1971, Discret. Math..

[5]  Peter Keevash The existence of designs , 2014, 1401.3665.

[6]  Vojtech Rödl,et al.  The asymptotic number of graphs not containing a fixed subgraph and a problem for hypergraphs having no exponent , 1986, Graphs Comb..

[7]  Peter Keevash Surveys in Combinatorics 2011: Hypergraph Turán problems , 2011 .

[8]  Zoltán Füredi,et al.  Colored packing of sets , 1987 .

[9]  P. Os,et al.  Problems and Results in Combinatorial Analysis , 1978 .

[10]  Noga Alon,et al.  Disjoint Systems , 1995, Random Struct. Algorithms.

[11]  Matthew Fitch,et al.  Rational exponents for hypergraph Turan problems , 2016, Journal of Combinatorics.

[12]  Stefan Glock Triple systems with no three triples spanning at most five points , 2018, Bulletin of the London Mathematical Society.

[13]  W. G. Brown,et al.  On the existence of triangulated spheres in 3-graphs, and related problems , 1973 .

[14]  M. Simonovits,et al.  The History of Degenerate (Bipartite) Extremal Graph Problems , 2013, 1306.5167.

[15]  J. Komlos,et al.  On the Size of Separating Systems and Families of Perfect Hash Functions , 1984 .

[16]  Paul Erdös,et al.  Problems and results in combinatorial analysis and graph theory , 1988, Discret. Math..

[17]  Gábor N. Sárközy,et al.  An Extension Of The Ruzsa-Szemerédi Theorem , 2004, Comb..

[18]  Deryk Osthus,et al.  On a conjecture of Erd\H{o}s on locally sparse Steiner triple systems , 2018, 1802.04227.

[19]  Béla Bollobás,et al.  Extremal problems in graph theory , 1977, J. Graph Theory.

[20]  Gennian Ge,et al.  Sparse hypergraphs: New bounds and constructions , 2017, J. Comb. Theory, Ser. B.

[21]  Vojtech Rödl,et al.  On a Packing and Covering Problem , 1985, Eur. J. Comb..

[22]  J. Maynard On the difference between consecutive primes , 2012, 1201.1787.

[23]  Noga Alon,et al.  On a Hypergraph Matching Problem , 2005, Graphs Comb..

[24]  F. Behrend On Sets of Integers Which Contain No Three Terms in Arithmetical Progression. , 1946, Proceedings of the National Academy of Sciences of the United States of America.

[25]  V. Rödl,et al.  Extremal Hypergraph Problems and the Regularity Method , 2006 .

[26]  Itzhak Tamo,et al.  Universally Sparse Hypergraphs with Applications to Coding Theory , 2019, 2019 IEEE International Symposium on Information Theory (ISIT).

[27]  Itzhak Tamo,et al.  Sparse Hypergraphs with Applications to Coding Theory , 2019, SIAM J. Discret. Math..

[28]  Tom Bohman,et al.  Large girth approximate Steiner triple systems , 2018, J. Lond. Math. Soc..

[29]  Noga Alon,et al.  The Probabilistic Method , 2015, Fundamentals of Ramsey Theory.

[30]  Gábor N. Sárközy,et al.  On a Turán-type hypergraph problem of Brown, Erdos and T. Sós , 2005, Discret. Math..

[31]  Gennian Ge,et al.  Separating Hash Families: A Johnson-type bound and New Constructions , 2016, SIAM J. Discret. Math..

[32]  Noga Alon,et al.  A characterization of the (natural) graph properties testable with one-sided error , 2005, 46th Annual IEEE Symposium on Foundations of Computer Science (FOCS'05).

[33]  P. Erdos Problems and Results in Combinatorial Analysis , 2022 .

[34]  W. S. Brown,et al.  Some extremal problems on r-graphs , 1971 .

[35]  V. Sós,et al.  On a problem of K. Zarankiewicz , 1954 .

[36]  E. Szemerédi Regular Partitions of Graphs , 1975 .

[37]  P. Erdös On extremal problems of graphs and generalized graphs , 1964 .

[38]  J. Pintz,et al.  The Difference Between Consecutive Primes, II , 2001 .

[39]  Zolt'an Furedi 2-cancellative hypergraphs and codes , 2011 .

[40]  Christopher M. Hartman Extremal problems in graph theory , 1997 .

[41]  Z. Furedi,et al.  Uniform hypergraphs containing no grids , 2011, 1103.1691.