Fusion of inverse optimal and model predictive control strategies

In this study, model predictive control (MPC) and inverse optimal control (IOC) approaches are merged with each other and a new control strategy is evolved. The key feature in this strategy is to solve the IOC problem repeatedly for each receding horizon of the model predictive control approach. From another perspective, MPC structure is inserted to IOC problem and thus, IOC problem is solved repeatedly using different initial conditions at the beginning of each receding horizon. In the solution phase of IOC, the parameters of the candidate control Lyapunov function matrix are estimated using the global evolutionary Big Bang-Big Crunch (BB-BC) optimization algorithm in an on-line manner. Thus, the proposed control structure solves the optimal control problem in classical MPC approach to the search of an appropriate candidate control Lyapunov function matrix for each control horizon. The comparison of the proposed method with the other related control methods are performed on the ball and beam system via simulations and real-time applications.

[1]  Alexander G. Loukianov,et al.  Discrete-time nonlinear systems inverse optimal control: A control Lyapunov function approach , 2011, 2011 IEEE International Conference on Control Applications (CCA).

[2]  David Q. Mayne,et al.  Constrained model predictive control: Stability and optimality , 2000, Autom..

[3]  E. Todorov,et al.  Inverse Optimality Design for Biological Movement Systems , 2011 .

[4]  P. Kokotovic,et al.  Inverse Optimality in Robust Stabilization , 1996 .

[5]  Müjde Güzelkaya,et al.  Inverse optimal control approach to model predictive control for linear system models , 2017, 2017 10th International Conference on Electrical and Electronics Engineering (ELECO).

[6]  Alexander G. Loukianov,et al.  Robust inverse optimal control for discrete-time nonlinear system stabilization , 2014, Eur. J. Control.

[7]  Selami Beyhan,et al.  An efficient sliding mode observer-based model predictive control: experimental implementation on a DC/DC power converter , 2018, Trans. Inst. Meas. Control.

[8]  Jay H. Lee,et al.  Model predictive control: past, present and future , 1999 .

[9]  R. De Keyser,et al.  Extended Prediction Self-Adaptive Control , 1985 .

[10]  G. Martin,et al.  Nonlinear model predictive control , 1999, Proceedings of the 1999 American Control Conference (Cat. No. 99CH36251).

[11]  S. Joe Qin,et al.  A survey of industrial model predictive control technology , 2003 .

[12]  Mehr Gul,et al.  Constrained model predictive control for an induction heating load , 2019, Trans. Inst. Meas. Control.

[13]  M. B. Zarrop,et al.  Book Review: Adaptive Optimal Control: the thinking man's GPC , 1991 .

[14]  R. Bitmead,et al.  Fake Riccati equations for stable receding-horizon control , 1997, 1997 European Control Conference (ECC).

[15]  Mrdjan J. Jankovic,et al.  Constructive Nonlinear Control , 2011 .

[16]  Donald E. Kirk,et al.  Optimal control theory : an introduction , 1970 .

[17]  Ibrahim Eksin,et al.  A new inverse optimal control method for discrete-time systems , 2015, 2015 12th International Conference on Informatics in Control, Automation and Robotics (ICINCO).

[18]  J. Jacob,et al.  Inverse optimal control of a class of affine nonlinear systems , 2019, Trans. Inst. Meas. Control.

[19]  C. R. Cutler,et al.  Dynamic matrix control¿A computer control algorithm , 1979 .

[20]  Yongchun Xie,et al.  A nearly optimal control for spacecraft rendezvous with constrained controls , 2016 .

[21]  R. E. Kalman,et al.  When Is a Linear Control System Optimal , 1964 .

[22]  Jay H. Lee Modeling and Identification for NonlinearModel Predictive Control: Requirements,Current Status and Future Research Needs , 2000 .

[23]  Edgar N. Sanchez,et al.  Discrete-Time Inverse Optimal Control for Nonlinear Systems , 2013 .

[24]  Francis J. Doyle,et al.  Efficient optimization approaches to nonlinear model predictive control , 2003 .

[25]  Jong-Tae Lim,et al.  ADAPTIVE NONLINEAR CONTROL OF A BALL AND BEAM SYSTEM USING THE CENTRIFUGAL FORCE TERM , 2012 .

[26]  L. Magni,et al.  Stability margins of nonlinear receding-horizon control via inverse optimality , 1997 .

[27]  M. Krstić,et al.  Stochastic nonlinear stabilization—II: inverse optimality , 1997 .

[28]  Miroslav Krstic,et al.  Inverse optimal stabilization of a rigid spacecraft , 1999, IEEE Trans. Autom. Control..

[29]  F. Allgöwer,et al.  Nonlinear Model Predictive Control: From Theory to Application , 2004 .

[30]  Ibrahim Eksin,et al.  A new optimization method: Big Bang-Big Crunch , 2006, Adv. Eng. Softw..

[31]  Alexander G. Loukianov,et al.  Speed-gradient inverse optimal control for discrete-time nonlinear systems , 2011, IEEE Conference on Decision and Control and European Control Conference.

[32]  Serdar Iplikci,et al.  Runge–Kutta model-based adaptive predictive control mechanism for non-linear processes , 2013 .

[33]  I. Eksin,et al.  Inverse optimal controller based on extended Kalman filter for discrete‐time nonlinear systems , 2018 .

[34]  Stephen J. Wright,et al.  Nonlinear Predictive Control and Moving Horizon Estimation — An Introductory Overview , 1999 .

[35]  R. Freeman,et al.  Robust Nonlinear Control Design: State-Space and Lyapunov Techniques , 1996 .

[36]  G. Nicolao,et al.  Stability and Robustness of Nonlinear Receding Horizon Control , 2000 .

[37]  Mohamed El-Sayed M. Essa,et al.  Model predictive force control of hardware implementation for electro-hydraulic servo system , 2018, Trans. Inst. Meas. Control.

[38]  Eduardo F. Camacho,et al.  On the stability of constrained MPC without terminal constraint , 2006, IEEE Transactions on Automatic Control.

[39]  Selami Beyhan,et al.  Adaptive uncertainty compensation-based nonlinear model predictive control with real-time applications , 2017, Neural Computing and Applications.

[40]  Manfred Morari,et al.  Model predictive control: Theory and practice - A survey , 1989, Autom..