Smoothed Analysis for the Conjugate Gradient Algorithm
暂无分享,去创建一个
[1] James Hardy Wilkinson,et al. Error Analysis of Direct Methods of Matrix Inversion , 1961, JACM.
[2] P. Deift,et al. How long does it take to compute the eigenvalues of a random, symmetric matrix? , 2012, 1203.4635.
[3] Gene H. Golub,et al. Matrix computations , 1983 .
[4] D. Spielman,et al. Smoothed analysis of algorithms: Why the simplex algorithm usually takes polynomial time , 2004 .
[5] Rene F. Swarttouw,et al. Orthogonal polynomials , 2020, NIST Handbook of Mathematical Functions.
[6] P. Deift,et al. Universality in numerical computations with random data , 2014, Proceedings of the National Academy of Sciences.
[7] Anne Greenbaum,et al. Predicting the Behavior of Finite Precision Lanczos and Conjugate Gradient Computations , 2015, SIAM J. Matrix Anal. Appl..
[8] Z. Strakos,et al. Krylov Subspace Methods: Principles and Analysis , 2012 .
[9] A. Edelman. Eigenvalues and condition numbers of random matrices , 1988 .
[10] Yann LeCun,et al. Universality in halting time and its applications in optimization , 2015, ArXiv.
[11] B. Simon. Trace ideals and their applications , 1979 .
[12] P. Deift,et al. On the condition number of the critically-scaled Laguerre Unitary Ensemble , 2015, 1507.00750.
[13] P. Deift. Orthogonal Polynomials and Random Matrices: A Riemann-Hilbert Approach , 2000 .
[14] Zdenek Strakos,et al. Krylov Subspace Methods , 2012 .
[15] P. Forrester. The spectrum edge of random matrix ensembles , 1993 .
[16] P. Deift,et al. Universality for the Toda Algorithm to Compute the Largest Eigenvalue of a Random Matrix , 2016, 1604.07384.
[17] P. Deift,et al. Universality for the Toda algorithm to compute the eigenvalues of a random matrix , 2016 .
[18] Ronald F. Boisvert,et al. NIST Handbook of Mathematical Functions , 2010 .
[19] H. Rutishauser. Theory of Gradient Methods , 1959 .
[20] A. Greenbaum. Behavior of slightly perturbed Lanczos and conjugate-gradient recurrences , 1989 .
[21] Shang-Hua Teng,et al. Smoothed analysis of algorithms: why the simplex algorithm usually takes polynomial time , 2001, STOC '01.
[22] Daniel A. Spielman. The Smoothed Analysis of Algorithms , 2005, FCT.
[23] V. Marčenko,et al. DISTRIBUTION OF EIGENVALUES FOR SOME SETS OF RANDOM MATRICES , 1967 .
[24] M. Hestenes,et al. Methods of conjugate gradients for solving linear systems , 1952 .