An unified intelligent inference framework for complex modeling and classification

In this paper, an unified three-dimensional inference framework is proposed for modeling and pattern classification under the complex environment where both stochastic and fuzzy uncertainties exist. Based on a three-dimensional probabilistic fuzzy set, this novel inference method integrates the probabilistic inference and fuzzy inference into one operation to improve the computational efficiency and achieve a better performance than that of the traditional fuzzy method or the probabilistic method. The experiments on the wind speed data and Pima Indians Diabetes data demonstrate the advantages and effectiveness of the unified inference framework under the complex stochastic environment.

[1]  Sankar K. Pal,et al.  Fuzzy models for pattern recognition , 1992 .

[2]  H. Hagras,et al.  Type-2 FLCs: A New Generation of Fuzzy Controllers , 2007, IEEE Computational Intelligence Magazine.

[3]  L. A. Zadeh,et al.  Fuzzy logic and approximate reasoning , 1975, Synthese.

[4]  M. Puri,et al.  Fuzzy Random Variables , 1986 .

[5]  Jerry M. Mendel,et al.  Interval Type-2 Fuzzy Logic Systems Made Simple , 2006, IEEE Transactions on Fuzzy Systems.

[6]  Ronald R. Yager,et al.  Including probabilistic uncertainty in fuzzy logic controller modeling using Dempster-Shafer theory , 1995, IEEE Trans. Syst. Man Cybern..

[7]  G. C. Mouzouris,et al.  Designing fuzzy logic systems , 1997 .

[8]  Uzay Kaymak,et al.  Fuzzy classification using probability-based rule weighting , 2002, 2002 IEEE World Congress on Computational Intelligence. 2002 IEEE International Conference on Fuzzy Systems. FUZZ-IEEE'02. Proceedings (Cat. No.02CH37291).

[9]  Sergios Theodoridis,et al.  Pattern Recognition, Fourth Edition , 2008 .

[10]  Michael I. Jordan,et al.  On Discriminative vs. Generative Classifiers: A comparison of logistic regression and naive Bayes , 2001, NIPS.

[11]  Zhi Liu,et al.  A probabilistic fuzzy logic system for modeling and control , 2005, IEEE Transactions on Fuzzy Systems.

[12]  Jerry M. Mendel,et al.  Type-2 fuzzy logic systems , 1999, IEEE Trans. Fuzzy Syst..

[13]  Mohinder S. Grewal,et al.  Kalman Filtering: Theory and Practice , 1993 .

[14]  Jerry M. Mendel,et al.  Interval type-2 fuzzy logic systems , 2000, Ninth IEEE International Conference on Fuzzy Systems. FUZZ- IEEE 2000 (Cat. No.00CH37063).

[15]  Shaoyuan Li,et al.  A Three-Dimensional Fuzzy Control Methodology for a Class of Distributed Parameter Systems , 2007, IEEE Transactions on Fuzzy Systems.

[16]  Han-Xiong Li,et al.  A probabilistic fuzzy learning system for pattern classification , 2010, 2010 IEEE International Conference on Systems, Man and Cybernetics.

[17]  Abraham Kandel,et al.  Constraints on belief functions imposed by fuzzy random variables , 1995, IEEE Trans. Syst. Man Cybern..

[18]  S. Mitter Filtering and stochastic control: a historical perspective , 1996 .

[19]  Elisabetta Binaghi,et al.  Fuzzy Dempster-Shafer reasoning for rule-based classifiers , 1999, Int. J. Intell. Syst..

[20]  A. Krogh,et al.  Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. , 2001, Journal of molecular biology.

[21]  Ana Colubi,et al.  Simulation of random fuzzy variables: an empirical approach to statistical/probabilistic studies with fuzzy experimental data , 2002, IEEE Trans. Fuzzy Syst..

[22]  Jonathan M. Garibaldi,et al.  New Concepts Related to Non-Stationary Fuzzy Sets , 2007, 2007 IEEE International Fuzzy Systems Conference.

[23]  Gert de Cooman,et al.  A random set description of a possibility measure and its natural extension , 2000, IEEE Trans. Syst. Man Cybern. Part A.

[24]  Zhi Liu,et al.  A Probabilistic Neural-Fuzzy Learning System for Stochastic Modeling , 2008, IEEE Transactions on Fuzzy Systems.

[25]  Shaoyuan Li,et al.  Analytical Study and Stability Design of a 3-D Fuzzy Logic Controller for Spatially Distributed Dynamic Systems , 2008, IEEE Transactions on Fuzzy Systems.

[26]  Kazuo Tanaka,et al.  Modeling and control of carbon monoxide concentration using a neuro-fuzzy technique , 1995, IEEE Trans. Fuzzy Syst..

[27]  Kazuo Tanaka,et al.  Fuzzy control systems design and analysis , 2001 .