An extremal [72, 36, 16] binary code has no automorphism group containing Z2 x Z4, Q8, or Z10

Let $C$ be an extremal self-dual binary code of length 72 and $g\in \Aut(C) $ be an automorphism of order 2. We show that $C$ is a free $\F_2 $ module and use this to exclude certain subgroups of order 8 of $\Aut (C)$. We also show that $\Aut(C)$ does not contain an element of order 10.

[1]  Philippe Gaborit,et al.  On the Classification of Extremal $[36,18,8]$ Binary Self-Dual Codes , 2008, IEEE Transactions on Information Theory.

[2]  Gabriele Nebe,et al.  Automorphisms of doubly even self‐dual binary codes , 2008, ArXiv.

[3]  Gabriele Nebe,et al.  The automorphism group of a self-dual binary [72,36,16] code does not contain Z7, Z3xZ3, or D10 , 2011, ArXiv.

[4]  Stefka Bouyuklieva On the Automorphisms of Order 2 with Fixed Points for the Extremal Self-Dual Codes of Length 24"m , 2002, Des. Codes Cryptogr..

[5]  Sheridan K. Houghten,et al.  The extended quadratic residue code is the only (48, 24, 12) self-dual doubly-even code , 2003, IEEE Trans. Inf. Theory.

[6]  Vassil Yorgov,et al.  The Automorphism Group of a Self Dual Binary [72,36,16] Code Does Not Contain Z4 , 2013, 1310.2570.

[7]  John J. Cannon,et al.  The Magma Algebra System I: The User Language , 1997, J. Symb. Comput..

[8]  John H. Conway,et al.  On primes dividing the group order of a doubly-even (72, 36, 16) code and the group order of a quaternary (24, 12, 10) code , 1982, Discret. Math..

[9]  Jon F. Carlson Free modules over some modular group rings , 1976 .

[10]  Eric M. Rains,et al.  Shadow Bounds for Self-Dual Codes , 1998, IEEE Trans. Inf. Theory.

[11]  N. J. A. Sloane,et al.  Cyclic self-dual codes , 1983, IEEE Trans. Inf. Theory.

[12]  Stefka Bouyuklieva A method for constructing self-dual codes with an automorphism of order 2 , 2000, IEEE Trans. Inf. Theory.

[13]  E. J. Farrell Cycle decompositions of complete graphs , 1982, Discret. Math..

[14]  J. L. Alperin,et al.  Local representation theory: Semisimple modules , 1986 .