Review of polymers for heat exchanger applications: Factors concerning thermal conductivity

Abstract Polymeric materials hold several advantages over metal components in heat exchangers such as cost savings, lighter weight and corrosion resistance. However, it is challenging to engineer plastics with good heat transfer characteristics, processability and required strength. Neat polymer resins have inferior mechanical and thermal properties relative to metals, requiring careful consideration of the entire heat exchanger system from materials to system design, to achieve sufficient performance. This review summarizes the physical parameters governing polymer and composite thermal conductivity, as well as the latest research on augmenting thermal conductivity. Highly filled composites containing carbon or metal have achieved thermal conductivity an order of magnitude higher than that of neat polymers. The effects of critical additive characteristics, such as interfacial compatibility, filler shape factor, loading level and processing technique, are reviewed. In addition to lower material costs, high volume processing technologies such as injection molding and extrusion are responsible for the cost savings of polymers over metals. Thus, the manufacturing considerations for the most promising high thermal conductivity polymer composites are also reviewed.

[1]  Y. Kim,et al.  Fabrication of aligned carbon nanotube-filled rubber composite , 2006 .

[2]  Hongda Du,et al.  Experiments and modeling of thermal conductivity of flake graphite/polymer composites affected by adding carbon-based nano-fillers , 2013 .

[3]  Sanghyun Yoo,et al.  Improving the through-thickness thermal and electrical conductivity of carbon fibre/epoxy laminates by exploiting synergy between graphene and silver nano-inclusions , 2015 .

[4]  T. S. Ravigururajan,et al.  Thermal conductivities of electrospun PAN and PVP nanocomposite fibers incorporated with MWCNTs and NiZn ferrite nanoparticles , 2013 .

[5]  J. Nam,et al.  High thermal conductivity epoxy composites with bimodal distribution of aluminum nitride and boron nitride fillers , 2012 .

[6]  Igor Krupa,et al.  Physical properties of thermoplastic/graphite composites , 2001 .

[7]  O. S. Gefle,et al.  Evaluation of electric, morphological and thermal properties of thermally conductive polymer composites , 2015 .

[8]  D. Kline Thermal conductivity studies of polymers , 1961 .

[9]  S. Khondaker,et al.  Graphene based materials: Past, present and future , 2011 .

[10]  S. Kim,et al.  Synergistic improvement of thermal conductivity of thermoplastic composites with mixed boron nitride and multi-walled carbon nanotube fillers , 2012 .

[11]  D. Chung Materials for thermal conduction , 2001 .

[12]  Xiao Hu,et al.  Thermal conductivity of polystyrene–aluminum nitride composite , 2002 .

[13]  T. Walther,et al.  Flow behavior of LCP melts and its influence on morphology and mechanical properties of injection molded parts , 2000 .

[14]  H. Brouwers,et al.  Heat transfer, condensation and fog formation in crossflow plastic heat exchangers , 1996 .

[15]  Y. Wan,et al.  Preparation and properties of polyamide 6 thermal conductive composites reinforced with fibers , 2013 .

[16]  Erick A. White,et al.  Supramolecular bionanocomposites 3: Effects of surface functionality on electrical and mechanical percolation , 2011 .

[17]  F. Szabó,et al.  Injection molding of ceramic filled polypropylene: The effect of thermal conductivity and cooling rate on crystallinity , 2013 .

[18]  Daniela RUSU,et al.  Mechanical and thermal properties of zinc powder filled high density polyethylene composites , 2001 .

[19]  P.H.F. Morshuis,et al.  Modelling of the thermal conductivity in polymer nanocomposites and the impact of the interface between filler and matrix , 2011 .

[20]  Jang‐Kyo Kim,et al.  Graphene oxide-based transparent conductive films , 2014 .

[21]  Guoqun Zhao,et al.  Heating/cooling channels design for an automotive interior part and its evaluation in rapid heat cycle molding , 2014 .

[22]  Xin Wang,et al.  Carbon Nanosheets for Polymeric Nanocomposites with High Thermal Conductivity , 2009 .

[23]  Ji‐Zhao Liang Estimation of thermal conductivity for polypropylene/hollow glass bead composites , 2014 .

[24]  Changhong Liu,et al.  Aligned Carbon Nanotube Composite Films for Thermal Management , 2005 .

[25]  S. Tjong Recent progress in the development and properties of novel metal matrix nanocomposites reinforced with carbon nanotubes and graphene nanosheets , 2013 .

[26]  R. Gregorio,et al.  Thermal conductivity behaviour of polymers around glass transition and crystalline melting temperatures , 2013 .

[27]  F. Dawson,et al.  Analytical modeling and characterization of heat transfer in thermally conductive polymer composites filled with spherical particulates , 2013 .

[28]  A. Boudenne,et al.  The mechanical and adhesive properties of electrically and thermally conductive polymeric composites based on high density polyethylene filled with nickel powder , 2013 .

[29]  B. Weidenfeller,et al.  Cooling behaviour of particle filled polypropylene during injection moulding process , 2005 .

[30]  J. Telis‐Romero,et al.  Non-newtonian flow and pressure drop of pineapple juice in a plate heat exchanger , 2010 .

[31]  C. L. Choy,et al.  Thermal conductivity of polymers , 1977 .

[32]  D. Chung,et al.  Thermally conducting aluminum nitride polymer-matrix composites , 2001 .

[33]  Yasuhide Shindo,et al.  Thermal conductivity of polymer composites with close-packed structure of nano and micro fillers , 2009 .

[34]  P. Rodriguez Selection of materials for heat exchangers , 1997 .

[35]  R. Gupta,et al.  Thermal Conductivity of Polymer Nanocomposites , 2009 .

[36]  P. Pissis,et al.  Electrical and thermal conductivity of polymers filled with metal powders , 2002 .

[37]  F. Kang,et al.  Percolation transition in thermal conductivity of β-Si3N4 filledepoxy , 2013 .

[38]  Yun Seok Chae,et al.  Thermal and electrical conductivity of poly(l-lactide)/multiwalled carbon nanotube nanocomposites , 2008 .

[39]  Dong-Wha Park,et al.  A Review on Thermal Conductivity of Polymer Composites Using Carbon-Based Fillers : Carbon Nanotubes and Carbon Fibers , 2010 .

[40]  D. Kuznetsov,et al.  Thermal conductivity of polypropylene composites filled with silane-modified hexagonal BN , 2015 .

[41]  Jie-Hua Zhao,et al.  Analysis of improved novel hollow fiber heat exchanger , 2014 .

[42]  M. C. Ray,et al.  Effective thermal conductivities of a novel fuzzy carbon fiber heat exchanger containing wavy carbon nanotubes , 2014 .

[43]  Guoqun Zhao,et al.  Development and evaluation of a new rapid mold heating and cooling method for rapid heat cycle molding , 2014 .

[44]  J. Won,et al.  Thermal conductivity of graphite filled liquid crystal polymer composites and theoretical predictions , 2013 .

[45]  B. Weidenfeller,et al.  Thermal conductivity, thermal diffusivity, and specific heat capacity of particle filled polypropylene , 2004 .

[46]  K. Pielichowski,et al.  Phase change materials for thermal energy storage , 2014 .

[47]  V. H. Morcos,et al.  Performance Analysis of a Plastic Shell-and-Tube Heat Exchanger , 1995 .

[48]  E. Kim,et al.  Effect of BN filler on thermal properties of HDPE matrix composites , 2013 .

[49]  Gang Chen,et al.  Polyethylene nanofibres with very high thermal conductivities. , 2010, Nature nanotechnology.

[50]  Jae Ik Lee,et al.  Enhanced thermal conductivity of polymer composites filled with hybrid filler , 2006 .

[51]  H. Ishida,et al.  Very high thermal conductivity obtained by boron nitride-filled polybenzoxazine , 1998 .

[52]  Myeongjin Kim,et al.  Fabrication of silicon carbonitride-covered boron nitride/Nylon 6,6 composite for enhanced thermal conductivity by melt process , 2015 .

[53]  Ya‐Ping Sun,et al.  Thermal conductivity of ethylene vinyl acetate copolymer/nanofiller blends , 2008 .

[55]  C. N. Lau,et al.  Superior thermal conductivity of single-layer graphene. , 2008, Nano letters.

[56]  D. R. Anderson Thermal Conductivity of Polymers , 1966 .

[57]  Susumu Nagai,et al.  Thermal conductivity of a polymer composite , 1993 .

[58]  Junkai Wang,et al.  Investigation of thermal conductivity and dielectric properties of LDPE-matrix composites filled with hybrid filler of hollow glass microspheres and nitride particles , 2015 .

[59]  J. Davidson,et al.  Thermal Analysis of Polymer Heat Exchangers for Solar Water Heating: A Case Study , 2000 .

[60]  P. Salagnac,et al.  Thermal conductivity enhancement of electrically insulating syndiotactic poly(styrene) matrix for diphasic conductive polymer composites , 2006 .

[61]  A. Satapathy,et al.  Mathematical model for evaluating effective thermal conductivity of polymer composites with hybrid fillers , 2015 .

[62]  D. Cahill,et al.  Thermal Conductivity of High-Modulus Polymer Fibers , 2013 .

[63]  S. Nagai,et al.  Thermal conductivities of composites in several types of dispersion systems , 1991 .

[64]  Cheng-Long Xiao,et al.  Development and application of rapid thermal cycling molding with electric heating for improving surface quality of microcellular injection molded parts , 2016 .

[65]  P. Morshuis,et al.  Thermal conductivity of polymeric composites: A review , 2013, 2013 IEEE International Conference on Solid Dielectrics (ICSD).

[66]  Shi-chang Wang,et al.  Experimental Investigation of a Novel Polymeric Heat Exchanger Using Modified Polypropylene Hollow Fibers , 2012 .

[67]  A. Jacobi,et al.  A review on polymer heat exchangers for HVAC&R applications , 2009 .

[68]  L. Shao,et al.  High thermal conductivity in amorphous polymer blends by engineered interchain interactions. , 2015, Nature materials.

[69]  H. Chiu,et al.  Surface modification of aluminum nitride by polysilazane and its polymer-derived amorphous silicon oxycarbide ceramic for the enhancement of thermal conductivity in silicone rubber composite , 2014 .

[70]  Sang Eun Shim,et al.  Effect of dispersion state of carbon nanotube on the thermal conductivity of poly(dimethyl siloxane) composites , 2010 .

[71]  I. Tavman,et al.  Effect of Particle Shape on Thermal Conductivity of Copper Reinforced Polymer Composites , 2007 .

[72]  Zhao Guoqun,et al.  Analysis of thermal cycling efficiency and optimal design of heating/cooling systems for rapid heat cycle injection molding process , 2010 .

[73]  Adriaan S. Luyt,et al.  Thermal, mechanical and electrical properties of copper powder filled low-density and linear low-density polyethylene composites , 2006 .

[74]  Laurent Ibos,et al.  Electrical and thermal behavior of polypropylene filled with copper particles , 2005 .

[75]  Z. Dang,et al.  High thermal conductivity and high electrical resistivity of poly(vinylidene fluoride)/polystyrene blends by controlling the localization of hybrid fillers , 2013 .

[76]  A. Yamanaka,et al.  Thermal Conductivity and Diffusivity of High-Strength Polymer Fibers , 1997 .

[77]  J. Ting,et al.  Ultra high thermal conductivity polymer composites , 2002 .

[78]  Zhen Li,et al.  Experimental investigation of plastic finned-tube heat exchangers, with emphasis on material thermal conductivity , 2009 .

[79]  A. Fina,et al.  Thermal conductivity of carbon nanotubes and their polymer nanocomposites: A review , 2011 .