Evolution of Cu nanoclusters on Cu(100)

Usin gm olecular dynamics simulations combined with kinetic Monte Carlo methods we have studied the evolution of copper nanoclusters on a copper (100) surface. We have developed a method for relaxing the clusters into a suitable configuration for input into the kinetic Monte Carlo method using molecular dynamics. Using kinetic Monte Carlo methods we have simulated the evolution of clusters with sizes of 22–2045 atoms at temperatures of 220–1020 K. We found that the Cu clusters on the surface will be reduced to one monolayer if given enough time to relax, and that this process shows an Arrhenius behaviour. In this paper we present the relaxation method that we developed and our observations for the evolution of the clusters. (Some figures in this article are in colour only in the electronic version)