Food chain chaos due to Shilnikov's orbit.

Assume that the reproduction rate ratio zeta of the predator over the prey is sufficiently small in a basic tri-trophic food chain model. This assumption translates the model into a singularly perturbed system of two time scales. It is demonstrated, as a sequel to the earlier paper of Deng [Chaos 11, 514-525 (2001)], that at the singular limit zeta=0, a singular Shilnikov's saddle-focus homoclinic orbit can exist as the reproduction rate ratio epsilon of the top-predator over the predator is greater than a modest value epsilon(0). The additional conditions under which such a singular orbit may occur are also explicitly given. (c) 2002 American Institute of Physics.

[1]  A. Hastings,et al.  Chaos in a Three-Species Food Chain , 1991 .

[2]  Michael E. Gilpin,et al.  Spiral Chaos in a Predator-Prey Model , 1979, The American Naturalist.

[3]  P. Waltman Competition models in population biology , 1983 .

[4]  Carles Bonet,et al.  Singular Perturbation of Relaxed Periodic Orbits , 1987 .

[5]  Sergio Rinaldi,et al.  Low- and high-frequency oscillations in three-dimensional food chain systems , 1992 .

[6]  Bo Deng,et al.  Chaotic attractors in One-Dimension Generated by a singular Shilnikov Orbit , 2001, Int. J. Bifurc. Chaos.

[7]  Bo Deng Folding at the genesis of chaos , 1995 .

[8]  On Šilnikov's homoclinic-saddle-focus theorem , 1993 .

[9]  Bo Deng,et al.  Food chain chaos due to junction-fold point. , 2001, Chaos.

[10]  Sergio Rinaldi,et al.  Slow-fast limit cycles in predator-prey models , 1992 .

[11]  Bernd Blasius,et al.  Complex dynamics and phase synchronization in spatially extended ecological systems , 1999, Nature.

[12]  R. Macarthur,et al.  Graphical Representation and Stability Conditions of Predator-Prey Interactions , 1963, The American Naturalist.

[13]  V. Volterra Fluctuations in the Abundance of a Species considered Mathematically , 1926 .

[14]  Bo Deng CONSTRUCTING HOMOCLINIC ORBITS AND CHAOTIC ATTRACTORS , 1994 .

[15]  S. Pavlou,et al.  Chaotic dynamics of a microbial system of coupled food chains , 2001 .

[16]  W. Calder,et al.  An allometric approach to population cycles of mammals , 1983 .

[17]  P Hogeweg,et al.  Interactive instruction on population interactions. , 1978, Computers in biology and medicine.

[18]  V. Volterra Fluctuations in the Abundance of a Species considered Mathematically , 1926, Nature.

[19]  Kevin S. McCann,et al.  Bifurcation Structure of a Three-Species Food-Chain Model , 1995 .

[20]  Yuri A. Kuznetsov,et al.  Belyakov Homoclinic Bifurcations in a Tritrophic Food Chain Model , 2001, SIAM J. Appl. Math..

[21]  C. S. Holling Some Characteristics of Simple Types of Predation and Parasitism , 1959, The Canadian Entomologist.

[22]  W. Calder,et al.  ECOLOGICAL SCALING: MAMMALS AND BIRDS , 1983 .

[23]  Neil Fenichel Geometric singular perturbation theory for ordinary differential equations , 1979 .

[24]  O. Rössler Chaotic Behavior in Simple Reaction Systems , 1976 .

[25]  M. Feigenbaum Quantitative universality for a class of nonlinear transformations , 1978 .

[26]  S Rinaldi,et al.  Singular homoclinic bifurcations in tritrophic food chains. , 1998, Mathematical biosciences.

[27]  Stephen Schecter,et al.  Persistent unstable equilibria and closed orbits of a singularly perturbed equation , 1985 .

[28]  William M. Schaffer,et al.  Stretching and Folding in Lynx Fur Returns: Evidence for a Strange Attractor in Nature? , 1984, The American Naturalist.

[29]  Bo Deng,et al.  Glucose-induced period-doubling cascade in the electrical activity of pancreatic β-cells , 1999, Journal of mathematical biology.

[30]  G. Wolkowicz The theory of the chemostat: Dynamics of microbial competition , 1996 .

[31]  Vikas Rai,et al.  Why chaos is rarely observed in natural populations , 1997 .

[32]  L. P. Šil'nikov ON A POINCARÉ-BIRKHOFF PROBLEM , 1967 .

[33]  A. Y. Kolesov,et al.  Asymptotic Methods in Singularly Perturbed Systems , 1994 .

[34]  Armin Schmidt,et al.  Zur Umsetzung von Trichloracetimidsäuremethylester mit Antimon(V)-chlorid. , 1976 .

[35]  A. J. Lotka Elements of Physical Biology. , 1925, Nature.