Effect of exfoliated few-layered graphene on corrosion and mechanical behaviour of the graphitized Al–SiC surface composite fabricated by FSP

[1]  Surjya K. Pal,et al.  Effect of multiple micro channel reinforcement filling strategy on Al6061-graphene nanocomposite fabricated through friction stir processing , 2019, Journal of Manufacturing Processes.

[2]  B. Sahoo,et al.  Solid state processed Al-1100 alloy/MWCNT surface nanocomposites , 2018, Materialia.

[3]  B. Sahoo,et al.  Influence of process parameters and temperature on the solid state fabrication of multilayered graphene-aluminium surface nanocomposites , 2018, Journal of Manufacturing Processes.

[4]  Abhishek Sharma,et al.  Particle size and shape effects on the surface mechanical properties of aluminium coated with carbonaceous materials , 2018, Journal of Composite Materials.

[5]  Surjya K. Pal,et al.  Friction stir processing of Al6061-SiC-graphite hybrid surface composites , 2018 .

[6]  Surjya K. Pal,et al.  Surface modification of Al6061 by graphene impregnation through a powder metallurgy assisted friction surfacing , 2018 .

[7]  D. Mahapatra,et al.  Multi-layer graphene reinforced aluminum –manufacturing of high strength composite by friction stir alloying , 2018 .

[8]  Abhishek Sharma,et al.  Surface modification of aluminium by graphene impregnation , 2017 .

[9]  Ravi Kumar,et al.  Preparation of aluminium 6063-graphite surface composites by an electrical resistance heat assisted pressing technique , 2017 .

[10]  J. Ramkumar,et al.  Effect of carbonaceous reinforcements on the mechanical and tribological properties of friction stir processed Al6061 alloy , 2016 .

[11]  D. Khanduja,et al.  Effect of graphite reinforcement on physical and mechanical properties of aluminum metal matrix composites , 2016 .

[12]  Dinesh Khanduja,et al.  A study on microstructure of aluminium matrix composites , 2015 .

[13]  A. Gerlich,et al.  Fabrication of metal matrix composites by friction stir processing with different Particles and processing parameters , 2014 .

[14]  Marco Mariotti,et al.  The Response of Durum Wheat to the Preceding Crop in a Mediterranean Environment , 2014, TheScientificWorldJournal.

[15]  H. M. Zakaria Microstructural and corrosion behavior of Al/SiC metal matrix composites , 2014 .

[16]  A. Gerlich,et al.  Grain Growth Behavior and Hall–Petch Strengthening in Friction Stir Processed Al 5059 , 2014, Metallurgical and Materials Transactions A.

[17]  K. Rhee,et al.  Electrochemical study of corrosion behavior of graphene coatings on copper and aluminum in a chloride solution , 2014 .

[18]  R. Dhayalan,et al.  Characterization of AA6063/SiC-Gr Surface Composites Produced by FSP Technique , 2014 .

[19]  Kumar Adepu,et al.  Wear and mechanical properties of 6061-T6 aluminum alloy surface hybrid composites [(SiC + Gr) and (SiC + Al2O3)] fabricated by friction stir processing , 2013 .

[20]  H. Akbulut,et al.  Thermal Expansion and Thermal Conductivity Behaviors of Al-Si/SiC/graphite Hybrid Metal Matrix Composites (MMCs) , 2012 .

[21]  J. A. Mohandesi,et al.  Optimization of process parameters for producing AA6061/SiC nanocomposites by friction stir processing , 2012 .

[22]  N. Koratkar,et al.  Graphene–aluminum nanocomposites , 2011 .

[23]  B. S. Murty,et al.  Effect of processing parameters on the corrosion behaviour of friction stir processed AA 2219 aluminum alloy , 2009 .

[24]  Wei Wang,et al.  A novel way to produce bulk SiCp reinforced aluminum metal matrix composites by friction stir processing , 2009 .

[25]  B. Dhindaw,et al.  Processing of Aluminum-Graphite Particulate Metal Matrix Composites by Advanced Shear Technology , 2009, Journal of Materials Engineering and Performance.

[26]  C. Xie,et al.  Microstructure and wear behaviour of laser-induced thermite reaction Al2O3 ceramic coatings on pure aluminum and AA7075 aluminum alloy , 2008 .

[27]  X. X. Zhang,et al.  Processing and properties of carbon nanotubes reinforced aluminum composites , 2007 .

[28]  L. Ci,et al.  Investigation of the interfacial reaction between multi-walled carbon nanotubes and aluminum , 2006 .

[29]  Y. Morisada,et al.  Effect of friction stir processing with SiC particles on microstructure and hardness of AZ31 , 2006 .

[30]  Miguel Ángel Martínez,et al.  Relationship Between Induction Time for Pitting and Pitting Potential for High-Purity Aluminum , 2003 .

[31]  S. Payan,et al.  Experimental procedure to analyse the corrosion mechanisms at the carbon/aluminium interface in composite materials , 2001 .

[32]  Rajiv S. Mishra,et al.  Friction Stir Processing: A New Grain Refinement Technique to Achieve High Strain Rate Superplasticity in Commercial Alloys , 2001 .

[33]  E. Pavlidou,et al.  A study on pitting behaviour of AA2024/SiCp composites using the double cycle polarization technique. , 1999 .

[34]  A. H. Yegneswaran,et al.  Role of Alloy Matrix and Dispersoid on Corrosion Behavior of Cast Aluminum Alloy Composites , 1998 .

[35]  M. S. Selamat Corrosion behavior of SiCp/6061 Al metal matrix composites in chloride solutions , 1996 .

[36]  N. Sato The stability of localized corrosion , 1995 .

[37]  L. Hihara,et al.  Corrosion of metal matrix composites , 1994 .

[38]  L. Hihara,et al.  Galvanic Corrosion of Aluminum-Matrix Composites , 1992 .

[39]  F. Mansfeld,et al.  Corrosion Protection of Al/SiC Metal Matrix Composites by Anodizing , 1992 .

[40]  A. H. Yegneswaran,et al.  Corrosion characteristics of cast aluminum alloy—3 wt% graphite particulate composites in different environments , 1987 .

[41]  F. Mansfeld,et al.  The evaluation of corrosion protection measures for metal matrix composites , 1986 .

[42]  David L. McDanels,et al.  Analysis of stress-strain, fracture, and ductility behavior of aluminum matrix composites containing discontinuous silicon carbide reinforcement , 1985 .