Hair cell synaptic ribbons are essential for synchronous auditory signalling

[1]  E. Gundelfinger,et al.  Molecular dissection of the photoreceptor ribbon synapse , 2005, The Journal of cell biology.

[2]  Peter Sterling,et al.  Structure and function of ribbon synapses , 2005, Trends in Neurosciences.

[3]  B. Edmonds,et al.  Evidence that fast exocytosis can be predominantly mediated by vesicles not docked at active zones in frog saccular hair cells , 2004, The Journal of physiology.

[4]  T. Parsons,et al.  Evidence That Rapid Vesicle Replenishment of the Synaptic Ribbon Mediates Recovery from Short-Term Adaptation at the Hair Cell Afferent Synapse , 2004, Journal of the Association for Research in Otolaryngology.

[5]  K. Angielczyk,et al.  Phylogenetic analysis of Russian Permian dicynodonts (Therapsida: Anomodontia): implications for Permian biostratigraphy and Pangaean biogeography , 2003 .

[6]  Leon Lagnado,et al.  Ribbon synapses , 2003, Current Biology.

[7]  P. Fuchs,et al.  The afferent synapse of cochlear hair cells , 2003, Current Opinion in Neurobiology.

[8]  G. Matthews,et al.  Endocytosis and Vesicle Recycling at a Ribbon Synapse , 2003, The Journal of Neuroscience.

[9]  Josef Ammermüller,et al.  The Presynaptic Active Zone Protein Bassoon Is Essential for Photoreceptor Ribbon Synapse Formation in the Retina , 2003, Neuron.

[10]  A. C. Meyer,et al.  Functional Inactivation of a Fraction of Excitatory Synapses in Mice Deficient for the Active Zone Protein Bassoon , 2003, Neuron.

[11]  S. Sequeira The skull of Cochleosaurus bohemicus Frič, a temnospondyl from the Czech Republic (Upper Carboniferous) and cochleosaurid interrelationships , 2003, Transactions of the Royal Society of Edinburgh: Earth Sciences.

[12]  L. Lagnado,et al.  Bulk Membrane Retrieval in the Synaptic Terminal of Retinal Bipolar Cells , 2003, The Journal of Neuroscience.

[13]  Mark Ellisman,et al.  Depolarization Redistributes Synaptic Membrane and Creates a Gradient of Vesicles on the Synaptic Body at a Ribbon Synapse , 2002, Neuron.

[14]  Alexander Egner,et al.  Fast 100-nm resolution three-dimensional microscope reveals structural plasticity of mitochondria in live yeast , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[15]  Paul A. Fuchs,et al.  Transmitter release at the hair cell ribbon synapse , 2002, Nature Neuroscience.

[16]  J. Kutzbach,et al.  Permian Phytogeographic Patterns and Climate Data/Model Comparisons , 2002, The Journal of Geology.

[17]  J. Kutzbach,et al.  Simulations of Permian Climate and Comparisons with Climate‐Sensitive Sediments , 2002, The Journal of Geology.

[18]  R. Damiani A systematic revision and phylogenetic analysis of Triassic mastodonsauroids (Temnospondyli: Stereospondyli) , 2001 .

[19]  B. Rubidge,et al.  Evolutionary Patterns Among Permo-Triassic Therapsids* , 2001 .

[20]  C. Garner,et al.  Localization of the presynaptic cytomatrix protein Piccolo at ribbon and conventional synapses in the rat retina: Comparison with Bassoon , 2001, The Journal of comparative neurology.

[21]  Thomas Voets,et al.  Calcium Dependence of Exocytosis and Endocytosis at the Cochlear Inner Hair Cell Afferent Synapse , 2001, Neuron.

[22]  E. V. Dias,et al.  A Temnospondyl amphibian from the Rio do Rasto Formation, Upper Permian of southern Brazil , 2001 .

[23]  T. Südhof,et al.  RIBEYE, a Component of Synaptic Ribbons A Protein's Journey through Evolution Provides Insight into Synaptic Ribbon Function , 2000, Neuron.

[24]  D. Zenisek,et al.  Transport, capture and exocytosis of single synaptic vesicles at active zones , 2000, Nature.

[25]  B. Battail A comparison of Late Permian Gondwanan and Laurasian amniote faunas , 2000 .

[26]  T. Moser,et al.  Kinetics of exocytosis and endocytosis at the cochlear inner hair cell afferent synapse of the mouse. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[27]  N. Jalil Continental Permian and Triassic vertebrate localities from Algeria and Morocco and their stratigraphical correlations , 1999 .

[28]  C. Garner,et al.  Bassoon, a Novel Zinc-finger CAG/Glutamine-repeat Protein Selectively Localized at the Active Zone of Presynaptic Nerve Terminals , 1998, The Journal of cell biology.

[29]  E. Neher Vesicle Pools and Ca2+ Microdomains: New Tools for Understanding Their Roles in Neurotransmitter Release , 1998, Neuron.

[30]  G. Matthews,et al.  Evidence That Vesicles on the Synaptic Ribbon of Retinal Bipolar Neurons Can Be Rapidly Released , 1996, Neuron.

[31]  Gary Matthews,et al.  Calcium dependence of the rate of exocytosis in a synaptic terminal , 1994, Nature.

[32]  S. Hell,et al.  Properties of a 4Pi confocal fluorescence microscope , 1992 .

[33]  M. Liberman Single-neuron labeling in the cat auditory nerve. , 1982, Science.

[34]  C. Devigne,et al.  Age-related changes in the C57BL/6J mouse cochlea. II. Ultrastructural findings. , 1981, Brain research.

[35]  T. Reese,et al.  Use of aldehyde fixatives to determine the rate of synaptic transmitter release. , 1980, The Journal of experimental biology.

[36]  D. Kemp Stimulated acoustic emissions from within the human auditory system. , 1978, The Journal of the Acoustical Society of America.

[37]  R. Bakker,et al.  Anatomical and Ecological Evidence of Endothermy in Dinosaurs , 1972, Nature.

[38]  F. Sjöstrand,et al.  A synaptic structure in the hair cells of the guinea pig cochlea , 1961 .

[39]  D. Blackburn,et al.  The vertebrate fauna of the Upper Permian of Niger — II, Preliminary description of a new pareiasaur , 2003 .

[40]  A. Yates,et al.  The phylogeny of the ‘higher’ temnospondyls (Vertebrata: Choanata) and its implications for the monophyly and origins of the Stereospondyli , 2000 .

[41]  L. Trussell,et al.  Synaptic mechanisms for coding timing in auditory neurons. , 1999, Annual review of physiology.

[42]  A. Milner,et al.  A cochleosaurid temnospondyl amphibian from the Middle Pennsylvanian of Linton, Ohio, U.S.A. , 1998 .