First Earth-Imaging CubeSat with Harmonic Diffractive Lens

Launched in March 2021, the 3U CubeSat nanosatellite was the first ever to use an ultra-lightweight harmonic diffractive lens for Earth remote sensing. We describe the CubeSat platform we used; our 10 mm diameter and 70 mm focal length lens synthesis, design, and manufacturing; a custom 3D-printed camera housing built from a zero-thermal-expansion metal alloy; and the on-Earth image post-processing with a convolutional neural network resulting in images comparable in quality to classical refractive optics used for remote sensing before.

[1]  R. Skidanov,et al.  Systems of generalized harmonic lenses for image formation , 2022, Journal of Optical Technology.

[2]  Berardi Sensale-Rodriguez,et al.  Impact of fabrication errors and refractive index on multilevel diffractive lens performance , 2020, Scientific Reports.

[3]  Roman Skidanov,et al.  Compact Imaging Systems Based on Annular Harmonic Lenses , 2020, Sensors.

[4]  Leonid L. Doskolovich,et al.  Intelligent video systems for unmanned aerial vehicles based on diffractive optics and deep learning , 2020, Optical Technologies for Telecommunications.

[5]  Yifan Peng,et al.  Learned large field-of-view imaging with thin-plate optics , 2019, ACM Trans. Graph..

[6]  Dae Wook Kim,et al.  A Thousand Earths: A Very Large Aperture, Ultralight Space Telescope Array for Atmospheric Biosignature Surveys , 2019, The Astronomical Journal.

[7]  Andreas Kääb,et al.  River-ice and water velocities using the Planet optical cubesat constellation , 2019, Hydrology and Earth System Sciences.

[8]  Jason Crusan,et al.  NASA's CubeSat Launch Initiative: Enabling broad access to space , 2019, Acta Astronautica.

[9]  Olivier Guyon,et al.  The TOLIMAN space telescope , 2018, Astronomical Telescopes + Instrumentation.

[10]  Feng Zhang,et al.  High-performance etching of multilevel phase-type Fresnel zone plates with large apertures , 2018 .

[11]  Shibin Wu,et al.  Research advances and key technologies of macrostructure membrane telescope , 2017 .

[12]  Artem V. Nikonorov,et al.  Vessel Segmentation for Noisy CT Data with Quality Measure Based on Single-Point Contrast-to-Noise Ratio , 2015, ICETE.

[13]  Jerald A. Britten,et al.  MOIRE: ground demonstration of a large aperture diffractive transmissive telescope , 2014, Astronomical Telescopes and Instrumentation.

[14]  Wolfgang Heidrich,et al.  High-quality computational imaging through simple lenses , 2013, TOGS.

[15]  Jerald A. Britten,et al.  MOIRE: initial demonstration of a transmissive diffractive membrane optic for large lightweight optical telescopes , 2012, Other Conferences.

[16]  Jian Liu,et al.  Eyepiece design with refractive-diffractive hybrid elements , 2000, SPIE Optics + Photonics.

[17]  Vicente Moreno,et al.  High efficiency diffractive lenses: Deduction of kinoform profile , 1997 .

[18]  G. M. Morris,et al.  Broadband imaging with holographic lenses , 1989 .

[19]  S. Bekki,et al.  INSPIRE-SAT 7, a Second CubeSat to Measure the Earth’s Energy Budget and to Probe the Ionosphere , 2022 .

[20]  Andrey Morozov,et al.  РЕКОНСТРУКЦИЯ ИЗОБРАЖЕНИЙ В ДИФРАКЦИОННО-ОПТИЧЕСКИХ СИСТЕМАХ НА ОСНОВЕ СВЕРТОЧНЫХ НЕЙРОННЫХ СЕТЕЙ И ОБРАТНОЙ СВЕРТКИ , 2017 .

[21]  Сравнительное исследование спектральных свойств асферических линз , 2015 .