GaInAsP semiconductor laser amplifiers for single-mode fiber communications

Gain, polarization sensitivity, saturation power, and noise characteristics of quaternary semiconductor laser amplifiers of the Fabry-Perot (FP) and traveling-wave (TW) types are reviewed. The status of antireflection coatings for TW amplifiers is presented. New results concerning the polarization sensitivity and output saturation power of a 1.5-μm buried-heterostructure (BH) amplifier are reported. A theoretical model is presented concerning the influence of the waveguide structure on the maximum internal gain of a CW-operating 1.5- μm BH amplifier, including thermal effects, and a comparison of this model with recent experimental results is reported. The influence of nonresonant losses on the noise factor of 1.5-μm amplifiers is discussed.

[1]  D. R. Kaplan,et al.  Exact calculation of the reflection coefficient for coated optical waveguide devices , 1984, AT&T Bell Laboratories Technical Journal.

[2]  Masahiro Asada,et al.  The effects of loss and nonradiative recombination on the temperature dependence of threshold current in 1.5-1.6 µm GalnAsP/InP lasers , 1983 .

[3]  P. Doussiere,et al.  Gain, polarisation sensitivity and saturation power of 1.5 μm near-travelling-wave semiconductor laser amplifier , 1987 .

[4]  Takaaki Mukai,et al.  Noise in an AlGaAs Semiconductor Laser Amplifier , 1982 .

[5]  R. Plastow,et al.  A theoretical and experimental investigation of Fabry-Perot semiconductor laser amplifiers , 1985, IEEE Journal of Quantum Electronics.

[6]  D. Marcuse Quantum mechanical explanation of spontaneous emission K-factor , 1982 .

[7]  G. Eisenstein Theoretical design of single-layer antireflection coatings on laser facets , 1984, AT&T Bell Laboratories Technical Journal.

[8]  N. A. Olsson Heterodyne gain and noise measurement of a 1.5 µm resonant semiconductor laser amplifier , 1986 .

[9]  Takaaki Mukai,et al.  Theoretical analysis and fabrication of antireflection coatings on laser-diode facets , 1985 .

[10]  C. Vassallo,et al.  Rigorous and approximate calculations of antireflection layer parameters for travelling-wave diode laser amplifiers , 1985 .

[11]  Yoshihisa Yamamoto,et al.  Coherent optical fiber transmission systems , 1981 .

[12]  C. A. Burrus,et al.  Gain measurements of InGaAsP 1.5-μm optical amplifiers , 1985, Topical Meeting on Integrated and Guided-Wave Optics.

[13]  S. Personick,et al.  Applications for quantum amplifiers in simple digital optical communication systems , 1973 .

[14]  K. Petermann Calculated spontaneous emission factor for double-heterostructure injection lasers with gain-induced waveguiding , 1979 .

[15]  H. Haus,et al.  On the "Excess spontaneous emission factor" in gain-guided laser amplifiers , 1985 .

[16]  K. Stubkjaer,et al.  Recombination, gain and bandwidth characteristics of 1.3-µm semiconductor laser amplifiers , 1987 .

[17]  K. Iga Single-mode conditions for Ga(x)In(1-x)As(y)P(1-y)/InP double-heterostructure strip waveguides with Ga(x')In(1-x')As(y')P(1-y') side bounding layers. , 1980, Applied optics.

[18]  B. Hakki,et al.  Gain spectra in GaAs double−heterostructure injection lasers , 1975 .

[19]  C. Henry Theory of spontaneous emission noise in open resonators and its application to lasers and optical amplifiers , 1986 .

[20]  Spontaneous emission in semiconductor laser amplifiers , 1985 .

[21]  G. Eisenstein,et al.  High quality antireflection coatings on laser facets by sputtered silicon nitride. , 1984, Applied optics.

[22]  C. Vassallo Scattering coefficients of antireflection layers for semiconductor amplifiers , 1986 .

[23]  J. Arnaud Comment: Quantum mechanical explanation of spontaneous emission K-factor , 1983 .

[24]  Frank Stern,et al.  Calculated spectral dependence of gain in excited GaAs , 1976 .

[25]  Ian W. Marshall,et al.  Wideband 1.5μm optical receiver using travelling-wave laser amplifier , 1986 .

[26]  Antireflection coatings on semiconductor laser facets using sputtered lead silicate glass , 1986 .

[27]  Polarisation-dependent gain spectrum of a 1.5 μm travelling-wave optical amplifier , 1986 .

[28]  G. Eisenstein,et al.  Measurement of the modal reflectivity of an antireflection coating on a superluminescent diode , 1983, IEEE Journal of Quantum Electronics.

[29]  J. Charil,et al.  Comparison of noise characteristics of Fabry-Perot-type and travelling-wave-type semiconductor laser amplifiers , 1983 .

[30]  Yoshihisa Yamamoto,et al.  S/N and Error Rate Performance in AlGaAs Semiconductor Laser Preamplifier and Linear Repeater Systems , 1982 .

[31]  Gain characteristics of a 1.5 μm DCPBH InGaAsP resonant optical amplifier , 1985 .

[32]  New method to measure facet reflectivity of antireflection (AR)-coated laser diodes and LEDs , 1985 .

[33]  J. Simon,et al.  Design and realisation of high-gain 1.5 μm semiconductor TW optical amplifiers , 1987 .

[34]  J. Simon,et al.  Progress towards heterodyne-type single-mode fiber communication systems , 1981 .

[35]  Dietrich Marcuse,et al.  Computer model of an injection laser amplifier , 1983 .

[36]  J. Benoit,et al.  1.5 μm laser with high external quantum efficiency and controlled emission wavelength , 1987 .

[37]  M. Ettenberg,et al.  Al2O3 half‐wave films for long‐life cw lasers , 1977 .

[38]  Takashi Kimura,et al.  Fabry-Perot cavity type 1.5 μm InGaAsP BH-laser amplifier with small optical-mode confinement , 1983 .

[39]  Yoshihisa Yamamoto,et al.  Noise and error rate performance of semiconductor laser amplifiers in PCM-IM optical transmission systems , 1980 .

[40]  Michael J. Adams,et al.  Analysis of semiconductor laser optical amplifiers , 1985 .

[41]  J. Simon Semiconductor Laser Amplifier for Single Mode Optical Fiber Communications , 1983 .