Fair cubic transition between two circles with one circle inside or tangent to the other

This paper describes a method for joining two circles with a C-shaped and an S-shaped transition curve, composed of a cubic Bézier segment. As an extension of our previous work; we show that a single cubic curve can be used for blending or for a transition curve preserving G2 continuity regardless of the distance of their centers and magnitudes of the radii which is an advantage. Our method with shape parameter provides freedom to modify the shape in a stable manner.

[1]  M. K. Kerimov,et al.  Applied and computational complex analysis. Vol. 1. Power series, integration, conformal mapping, location of zeros: Henrici P. xv + 682 pp., John Wiley and Sons, Inc., New York — London, 1974☆ , 1977 .

[2]  Zulfiqar Habib,et al.  G2 cubic transition between two circles with shape control , 2009 .

[3]  M. Sarfraz Geometric Modeling: Techniques, Applications, Systems and Tools , 2004, Springer Netherlands.

[4]  Lizhuang Ma,et al.  Improvement Construction for Planar G2 Transition Curve Between Two Separated Circles , 2006, International Conference on Computational Science.

[5]  Zulfiqar Habib,et al.  Rational cubic spline interpolation with shape control , 2005, Comput. Graph..

[6]  Zulfiqar Habib,et al.  On PH quintic spirals joining two circles with one circle inside the other , 2007, Comput. Aided Des..

[7]  Manabu Sakai,et al.  Inflection points and singularities on planar rational cubic curve segments , 1999, Comput. Aided Geom. Des..

[8]  Henry C. Thacher,et al.  Applied and Computational Complex Analysis. , 1988 .

[9]  Jack Dongarra,et al.  Computational science: ICCS 2006. Volumes 1-4 , 2006 .

[10]  Gerald Farin,et al.  Curves and surfaces for computer aided geometric design , 1990 .

[11]  Zulfiqar Habib,et al.  SPIRAL TRANSITION CURVES AND THEIR APPLICATIONS , 2004 .

[12]  Muhammad Sarfraz,et al.  Automatic outline capture of Arabic fonts , 2002, Inf. Sci..

[13]  Muhammad Sarfraz,et al.  Curve Fitting for Large Data Using Rational Cubic Splines , 2003, International Journal of Computers and Their Applications.

[14]  Zulfiqar Habib,et al.  Transition between concentric or tangent circles with a single segment of G2 PH quintic curve , 2008, Comput. Aided Geom. Des..

[15]  Dereck S. Meek,et al.  Approximation of a planar cubic Bézier spiral by circular arcs , 1996 .

[16]  Dereck S. Meek,et al.  A Pythagorean hodograph quintic spiral , 1996, Comput. Aided Des..

[17]  Manabu Sakai,et al.  Osculatory interpolation , 2001, Comput. Aided Geom. Des..

[18]  Dereck S. Meek,et al.  Planar G2 transition between two circles with a fair cubic Bézier curve , 1999, Comput. Aided Des..

[19]  Josef Hoschek,et al.  Fundamentals of computer aided geometric design , 1996 .

[20]  Steven M. LaValle,et al.  Planning algorithms , 2006 .

[21]  D. Walton,et al.  Curvature extrema of planar parametric polynomial cubic curves , 2001 .

[22]  Dereck S. Meek,et al.  A smooth, obstacle-avoiding curve , 2006, Comput. Graph..

[23]  T. Sakkalis,et al.  Pythagorean hodographs , 1990 .

[24]  Dereck S. Meek,et al.  Planar G 2 transition curves composed of cubic Bézier spiral segments , 2003 .

[25]  Jing-Sin Liu,et al.  Practical and flexible path planning for car-like mobile robot using maximal-curvature cubic spiral , 2005, Robotics Auton. Syst..

[26]  D. Walton,et al.  A planar cubic Be´zier spiral , 1996 .